

IEEE ENERGY CONVERSION CONGRESS & EXPO

O VIRTUAL CONFERENCE PROGRAM

остовек 11-15

SPONSORED BY THE IEEE POWER ELECTRONICS AND INDUSTRY APPLICATIONS SOCIETIES

Table of Contents

y	
•	

ECCE 2020 Sponsors	
Welcome from General Chair	4
Welcome from Technical Program Committee	5
2020 Organizing Committee	6
Program Subcommittees	8
ECCE 2020 Virtual Platform How-To Guide	11
Live/Simu-Live Session Schedules	18
Plenary Session	23
Special Sessions	25
Tutorials	44
TECHNICAL PROGRAM	
Oral Sessions	
Poster Sessions	110
Product and Services Sessions	
Student Demonstrations	
Exhibitor Listing	151
ECCE 2021 INFORMATION	
Call for Papers	152
Call for Tutorials	
Call for Special Session Organizers	

ECCE 2020 Sponsors

SILVER SPONSORS

EXHIBITING SPONSORS

Welcome from General Chair

It is a great pleasure for me to welcome you to the 12th Annual IEEE Energy Conversion Congress & Exposition (ECCE 2020), from October 11 to October 15, 2020. ECCE is IEEE's flagship conference on energy conversion systems and technologies and is sponsored by the **IEEE Industrial Application Society (IAS)** and **IEEE Power Electronics Society (PELS)**.

Acclaimed for its top-quality content, ECCE is the world's leading technical conference and exposition for energy conversion solutions. Each year, we bring together a multidisciplinary group of researchers, engineers, and scientists from all over the world to present and exchange breakthrough ideas. ECCE is unique in its emphasis on integrated systems, presenting the best in applied integrated systems research together with innovations in individual energy conversion components.

2020 has been a very challenging year due to the COVID-19 pandemic. With the safety and wellbeing of our participants as our top priority, ECCE 2020—originally planned to be

held in Detroit, Michigan, USA—has been converted to a fully virtual conference. To provide maximum flexibility for the participants, the ECCE 2020 virtual conference program includes video-on-demand tutorials and technical presentations as well as live plenary sessions and special panel sessions. Virtual exhibitions at ECCE also showcase state-of-the-art technologies, products, and solutions. This virtual format allows us to still come together to learn, share ideas, and gain insight into the latest innovations within the energy conversion field while ensuring that the current landscape does not hinder anyone's ability to participate.

ECCE 2020 features four plenary talks on the challenges in the energy conversion industry, from Dr. Anna Stefanopoulou, Energy Institute Director, University of Michigan, Ann Arbor; Dr. John A. Cavolowsky, Director, Transformative Aeronautics Concepts Program, NASA Aeronautics Research Mission Directorate (ARMD); Mr. Rob Del Core, Assistant Vice President, Fuel Cell Power Systems and Hydrogen Infrastructure, Technology and Strategy Group, Ricardo North America; and Mr. Sam Holeman, Vice President, Transmission, System Planning and Operation, Duke Energy. We are extremely fortunate to have these four distinguished leaders from industry and the scientific community to share their wisdom and visions with us.

This year, the ECCE Technical Program Committee (TPC) has made significant effort to completely redesign the traditional ECCE technical program to ensure a pleasant virtual conference experience for everyone. The ECCE 2020 technical program has 62 oral sessions and 36 digital poster sessions, featuring a total of 959 technical papers. All these sessions have on-demand videos of the presentations that will be available to view for a month, as well as a live interactive "meet the authors" component during the conference week. There are also 20 special sessions in ECCE 2020, all live throughout the week. These are strongly oriented towards the latest industry interests and technology trends, as well as the latest collaboration opportunities between industry and academia. In ECCE 2020, two special memorial sessions will be dedicated to Prof. Tom Lipo, who passed away in the past year. ECCE 2020's professional program also includes 14 tutorial sessions that offer in-depth discussions of important and complex technical topics, combining practical application with theory. All the tutorials will be accessible by video-on-demand for a month and will also feature live "meet the presenters" sessions during the week.

I would like to express my utmost gratitude to the members of the ECCE 2020 Organization Committee, the ECCE Steering Committee, SmithBucklin, the IEEE MCE team, as well as the PELS and IAS society staffs, who have made this event possible through their hard work, selfless dedication, and numerous extra hours dealing with the fluid situation of the pandemic. I would like to thank PELS and IAS for their sponsorship and stewardship, and all of our corporate sponsors for their generous support. I would like to thank each and every one of you, whether you are a paper presenter, an attendee, an exhibitor, a volunteer, or any combination of the above, for your contribution and participation.

Once again, I sincerely welcome you to ECCE 2020 and please enjoy the exciting virtual conference program.

LiL

Yunwei (Ryan) Li ECCE 2020 General Chair

Welcome from Technical Program Committee

On behalf of the Technical Program Committee (Emmanuel Agamloh, Navid Zargari, Henry Chung, and Martin Ordonez) it is our great pleasure to welcome you to a fully online edition of the IEEE Energy Conversion Congress & Exposition (ECCE 2020). This year, the program features unlimited on-demand content and exciting live sessions to bring our community together. ECCE is the world's leading conference on energy conversion systems and is sponsored by the IEEE Industry Applications Society (IAS) and IEEE Power Electronics Society (PELS).

The conference offers a multidisciplinary array of topics ranging from machines for transportation, battery chargers, and multilevel converters to topics in wide-bandgap devices and machine diagnosis, to name a few. The content presented is curated to provide in-depth exposure to the latest breakthrough research in the field and to cover energy conversion systems in their entirety. All the high-quality content has been organized in a portal for easy access. Scheduled Q&A sessions will provide opportunities to interact with the presenters and network with community members.

Our program includes peer-reviewed technical presentations, special sessions, interactive Q&A sessions, and tutorials, as well as plenary talks and an exposition with exhibitors and poster presentations. This mixture creates a highly interactive learning and networking environment with a multitude of opportunities for exchanging beyond-state-of-the-art knowledge and ideas on energy conversion systems and technologies. As 2020's ECCE will take place on an entirely virtual platform, we look forward to your participation to ensure we have lively interaction and discussion.

The conference has received a total of 1615 digest submissions from 70 countries. After a rigorous peer review and scheduling process, 959 papers have been scheduled for oral/poster presentation. Special thanks are extended to our 24 track chairs and 182 topic chairs who managed and organized the review process to identify the best papers for ECCE. On average, each digest received over 4 reviews. For the very first time, the ECCE Technical Program Committee had two virtual meetings in April to finalize all paper decisions.

The tutorials co-chairs have received and reviewed 54 proposals, and 14 selected tutorials are offered online this year. Discussion time has been allocated to allow interaction with tutorial presenters. Finally, we have the participation of key industry players to showcase their products and innovations in our virtual exhibitor sessions, creating a dynamic online environment to learn, enjoy great technical conversations, and make high-impact professional connections.

ECCE 2020 Technical Program Committee

We look forward to virtually welcoming you to ECCE 2020—thank you for helping us making ECCE 2020 an exciting virtual event. *Stay healthy!*

Emmanuel Agamloh

Navid Zargari

Henry Chung

Martin Ordonez

2020 Organizing Committee

General Chair

Yunwei (Ryan) Li University of Alberta, Canada yunwei.li@ualberta.ca

Technical Program Committee (TPC) Co-Chairs

Emmanuel Agamloh Baylor University, USA Emmanuel_agamloh@baylor.edu

Henry Chung City University of Hong Kong, Hong Kong eeshc@cityu.edu.hk

Navid Zargari Rockwell Automation, Canada nrzargari@ra.rockwell.com

Martin Ordonez University of British Columbia, Canada mordonez@ece.ubc.ca

Finance Chair Mark Scott Miami University, USA scottmj3@miamioh.edu

Industrial Partnership Chairs

Peter Wung GE Aviation, USA pwung@earthlink.net

Avoki Omekanda General Motors, USA avoki.omekanda@ieee.org

Plenary Session Chair

Liuchen Chang University of New Brunswick, Canada Ichang@unb.ca

Tomy Sebastian Halla Mechatronics, USA tomy.sebastian@halla.com

Exhibit & Partnership Chairs

David Morrison How2Power, USA david@how2power.com

Grant Pitel Magna-Power Electronics, Inc. USA gpitel@magna-power.com

Publicity Chair

Kai Sun Tsinghua University sun-kai@mail.tsinghua.edu.cn

Yongheng Yang Aalborg University yoy@et.aau.dk

Special Session Chairs

Bulent Sarlioglu University of Wisconsin-Madison, USA sarlioglu@wisc.edu

Xiongfei Wang Aalborg University, Denmark xwa@et.aau.dk

Publication Chairs

Xiaonan Lu Temple University, USA xiaonan.lu@temple.edu

Carl Ho University of Manitoba, Canada *Carl.Ho@umanitoba.ca*

Xu She United Technologies Corporation, USA xshe@ieee.org

Awards Chairs

John Shen Illinois Institute of Technology, USA zshen6@iit.edu

Tutorial Chairs

Xinbo Ruan Nanjing University of Aeronautics and Astronautics, China *ruanxb@nuaa.edu.cn*

Ali Khajehoddin University of Alberta, Canada *khajeddin@ualberta.ca*

Local Arrangement Chairs

Al-Thaddeus Avestruz University of Michigan, USA avestruz@umich.edu

Abraham Gebregergis Veoneer, USA abraham.g.us@ieee.org

Webmaster Chairs

Jennifer Vining Pure Watercraft, USA guinevere.vining@ieee.org

Dong Cao University of Dayton dcao02@udayton.edu

Yuan Li Florida State University yli@caps.fsu.edu

Women in Engineering (WIE) Chairs

Norma Anglani University of Pavia, Italy nanglani@unipv.it

Jin Ye University of Georgia, USA Jin.Ye@uga.edu

Moya Dai Rockwell Automation, Canada *jdai1@ra.rockwell.com*

Student Activities Chairs

Zheyu Zhang GE Global Research, USA *zheyu.zhang@ieee.org*

Minjie Chen Princeton University minjie@princeton.edu

Virtual Platform Coordination Chair

Anant Singh Halla Mechatronics, USA anant.singh@halla.com

Program Subcommittees

Renewable and Sustainable Energy Applications

Vice Chair: Ke Ma, Shanghai Jiao Tong University Vice Chair: Kaushik Basu, Indian Institute of Science

Yongheng Yang, Aalborg University Hengzhao Yang, New Mexico Tech University Feng Gao, Shandong University Alvaro Luna, Polytechnic University of Catalonia Georgios Konstantinou, University of New South Wales Fei Gao, Shanghai Jiao Tong University Suryanarayana Doolla, IIT Bombay, India Xiaofeng Yang, Beijing Jiaotong University Barendse, Paul, University of Cape Town Baranwal, Rohit, Eaton Corporation Mallik, Ayan, Arizona State University Nag, Soumya Shubhra, Indian Institute of Technology Delhi Krishnamoorthy, Harish, University of Houston Maheshwari, Ramkrishan, University of Southern Denmark Park, Jae-Do, University of Colorado Denver Kapat, Santanu, Indian Institute of Technology Kharagpur

Smart Grid & utility Applications

Vice Chair: Adel Nasiri, University of Wisconsin-Milwaukee Vice Chair: Yaosuo Xue, OakRidge National Laboratory

Necmi Altin, *Gazi University* Cheng Luo, *Eaton Corporation* Saban Ozdemir, *Gazi University* Mohammad Shadmand, *Kansas State University* Behrooz Mirafzal, *Kansas State University* Afshin Izadian, *Indiana University* Yushan Liu, *Beihang University* Xiao Li, *Texas A&M* Dong Dong, *Virginia Tech* Liming Liu, *ABB* Alinaghi Marzoughi, *Enersys*

Big Data, Machine learning, Cyber security and design automation

Vice Chair: Brandon Grainger, University of Pittsburgh

Stephen Lee, University of Pittsburgh Yarui Peng, University of Arkansas Osama Mohammad, PhD, Florida International University Shajjad Chowdhury, PhD, Oakridge National Labs Mostak Mohammad, PhD, Oakridge National Labs Hashim Al Hassan, Switched Source, LLC Zachary Smith, University of Pittsburgh Burak Ozpineci, Oakridge National Labs Cao, Yue, Oregon State University

Transportation Electrification Applications

Vice Chair: Mithat Kisacikoglu, University of Alabama Vice Chair: Mahesh Krishnamurthy, Illinois Institute of Technology

Fei Gao, UTBM, France Berker Bilgin, McMaster Univ, Canada Harish Krishnamoorthy, University of Houston Yigeng Huangfu, Northwestern Polytechnic University, China Breaz, Elena, UTBM, France Kiani, Morgan, Texas Christian University Choi, Gilsu, Inha University, South Korea Pan, Di, GE Global Research Pries, Jason, Oak Ridge National Laboratory

Power Converter Topologies

Vice Chair: Yongsug Suh, Jeonbuk National University Vice Chair: Luca Solero, Roma Tre University Vice Chair: Gerry Moschopoulos, Western University

Manuel Arias, University of Oviedo, Spain Dong Cao, University of Dayton, USA Petar Grbovic, University of Innsbruck, Austria Wenkang Huang, Infineon Technologies Diego Lamar, University of Oviedo, Spain Santanu Mishra, Indian Institute of Technology Kanpur, India Shafiq Odhano, University of Newcastle, UK Grant Pitel, Magna-Power Electronic, USA Gabriele Rizzoli, University of Bologna, Italy Li Zhang, Nanyang Tewchnological University, Singapore Pritam Das, Binghamton University, USA Brian Cheng, Texas Instruments Mohamed Youssef, University of Ontario Institute of Technology, Canada Zhiliang Zhang, Nanjing University of Aeronautics and Astronautics, China Shangzai Pan, Wuhan University, China Leila Parsa, University of California at Santa Cruz, USA Majid Pahlevani, Queen's University, Canada Mehdi Narimani, McMaster University, Canada Mahshid Amirabadi, Northeastern University, USA Stefano Bifaretti, Univ. of Rome Torvergata, Italy Young-Hun Cho, Konkuk National University, Korea Marco di Benedetto, University Roma Tre, Italy Jun-ichi Itoh, Nagaoka University of Technology, Japan Kyo-Beum Lee, Ajou University, Korea Roberto Petrella, University of Udine, Italy Sebastian Rosado, UTRC, Ireland Jon Are Suul, SINTEF, Norway Lixiang Wei, Rockwell Automation, USA

Control, Modelling and Optimization of Power Converters

Vice Chair: Xiaonan Lu, *Temple University* Vice Chair: Khurram Afridi, *Cornell University* Vice Chair: Laili Wang, *Xi'an Jiaotong University*

Andrea Formentini, University of Nottingham Alessandro Lidozzi, ROMA TRE University Vito Giuseppe Monopoli, Politecnico di Bari Marcello Pucci, INM-CNR Yuhua Du, Temple University Ghanshyamsinh Gohil, University of Texas, Dallas Fei Lu, Drexel University Jin Tan, National Renewable Energy Laboratory Arash Khoshkbar-Sadigh, Penn State University, University Park Dongbo Zhao, Argonne National Laboratory Sheng Zheng, Oak Ridge National Laboratory Jiangbiao He, University of Kentucky Malik Elbuluk, University of Akron Dehong (Mark) Xu, Zhejiang University Bilal Akin, University of Texas at Dallas David Perreault, Massachusetts Institute of Technology Elisabetta Tedeschi, Norwegian University of Science and Technology Ali Khajehoddin, University of Alberta Daniel Costinett, University of Tennessee Knoxville Luca Corradini, University of Padavo Saad Pervaiz, Texas Instruments Rostan Rogriguez, ABB Samantha Gunter, General Motors Ali Bazzi, University of Connecticut Madhav Manjrekar, University of North Carolina at Charlotte Li Ran, Chongqing University Feng Gao, Shandong University Zhenbin Zhang, Shandong University Xiong Du, Chongqing University Min Chen, Zhejiang University Cungang Hu, Anhui University Haitao Hu, Southwest Jiaotong University Li Zhang, Hohai University Liu, Zeng, Xi'an Jiaotong University Yi, Hao, Xi'an Jiaotong University

Electrical Machines

Vice Chair: Rukmi Dutta, University of new South Wales Vice Chair: Greg Heins, R&D Regal Beloit, AP

Edwin Xikai Sun, Rockwell Automation Rajeev Vyas, General Motors Andrea Cavagnino, Politecnico di Torino Cong Ma, BorgWarner Corporation Takashi Kato, Nissan Motor Co., Itd., Japan

Tsarafidy Raminosoa, Oak Ridge National Laboratory Zhe Zhang, Eaton Corporation, USA Gerd Bramerdorfer, Johannes Kepler University Linz, Austria Silvio Vaschetto, Politecnico di Torino Peng Han, University of Kentucky, USA Takashi Kosaka, Nagoya Insititute of Technology Giulio De Donato, Sapienza - Univeristy of Rome, Italy Bryan Ruddy, University of Auckland, New Zealand Narges Taran, Borg Warner Inc. Jose Antonino-Daviu, Universitat Politecnica de Valencia, Spain Shanelle N. Foster, Michigan State University, United States Antonio Griffo, University of Sheffield Nick Simpson, University of Bristol, UK Zhiwei Zhang, The Ohio State University Baoyun Ge, C-Motive Technologies, Inc Roy McCann, University of Arkansas Tausif Husain, Borgwarner Fan Wu, Marguette University Renato Lyra, Aerotech Inc. Eric L Severson, University of Wisconsin-Madison, USA Wolfgang Gruber, Johannes Kepler University Linz, Austria Alireza Fatemi, General Motors, USA Rajesh Pranay Deodhar, IMRA Europe SAS UK Research Centre Subrata Saha, Aisin AW Co. Ltd. Japan Lijian Wu, Zhejiang University, China Udochukwu Bola Akuru, Stellenbosch University, South Africa

Electric Drives

Vice Chair: Jul-ki Seok, Yeungnam University, Korea Vice Chair: Antonio J. Marques Cardoso, University of Beira Interior (UBI), Portugal

Juan M. Guerrero, University of Oviedo, Spain Marko Hinkkanen, Aalto University, Finland Raja Ramakrishnan, Halla Mechatronics, USA Paolo Pescetto, Politecnico Di Torino, Italy Marcello Pucci, National Research Council, Italy Jingbo Liu, Rockwell Automation, USA Rubino Sandro, Politecnico di Torino, Italy Roberto Petrella, University of Udine, Italy David Diaz Reigosa, University of Oviedo, Spain Giacomo Scelba, University of Catania, Italy Michele Mengoni, University of Bologna, Italy Michael Harke, Collins Aerospace, USA Shafiq Ahmed Odhano, University of Newcastle, UK Di Pan, GE Global Research, USA Prerit Pramod, Nexteer Automotive Corporation, USA Bilal Akin, University of Texas Dallas, USA Behrooz Mirafzal, Kansas State University, USA Mario Pulvirenti, STMicroelectronics, Italy Hassan Eldeed, Florida International University, USA

Power Semiconductor Devices, Passive Components, Packaging, Integration, and Materials

Vice Chair: Tanya Gachovska, Solantro Semiconductors, Canada Vice Chair: Francesco Iannuzzo, Aaborg Univresity, Denmark

Cong Li, GE Research He Li, NIO Automotive Yang Hengzhao, New Mexico Tech Dong Jiang, Huazhong Univ. of Sci. and Tech. Feng Qi, Transphorm Zheyu Zhang, Clemson University Christina DiMarino, Virginia Tech Ramanujam Ramabhadran, GE Global Research Maja Harfman Todorovic, GE Global Research Xiu Yao, University at Buffalo Raghav Khanna, University of Toledo Mona Ghassemi, Virginia Tech Maeve Duffy, NUI Galway Andrew Lemmon, The University of Alabama Radha Sree Krishna Moorthy, Oak Ridge National Laboratory Xuning Zhang, Littelfuse Inc Diaz Reigosa, Paula, University of applied sciences and arts northwestern Switzerland (FHNW) Wang, Zhiqiang (Jack), Huazhong University of Science & Technology Booth, Kristen, University of South Carolina Luo, Fang, Stony Brook University Ma, Cong, Borgwarner Xiong, Han, GE Global Research

Nawaz, Muhammad, ABB Corporate Research

Energy Efficient Systems Applications and Lighting Technologies

Vice Chair: Marco Dalla Costa, University of Santa Maria, Brazil

Emerging Technologies and Applications

Vice Chair: Jin Wang, Ohio State University Vice Chair: Huai Wang, Aalborg Univresity

Xiaohui Qu, Southeast University, China Chi-Kwan Lee , The University of Hong Kong, Hong Kong, China Óscar Lucía, University of Zaragoza, Spain Hengzhao Yang, New Mexico Institute of Mining and Technology, USA Haoran Wang, Aalborg University, Denmark Harish Sarma Krishnamoorthy, University of Houston, USA

Conflict of interest

Vice Chair: Jean-Luc Schanen, Univ. Grenoble Alpes, G2ELab

ECCE 2020 Virtual Platform How-To Guide

The ECCE 2020 virtual conference kicks off October 11 with a full lineup of on-demand tutorials, technical presentations, live plenary sessions, special panel sessions and a virtual exhibition. Please review the following information to prepare for this exciting virtual event.

Accessing the Platform

Attendees can access the platform <u>here</u>, or by clicking on the link provided to them via their confirmation email.

Please watch a 6-minute instructional video to familiarize yourself with the virtual platform.

If you already registered for the event, you can start to build your agenda. Be sure to use the email address you used to register for the conference to log in to the virtual event platform. The password is **ECCE2020**.

ALREADY REGISTERED? CLICK HERE TO BUILD YOUR AGENDA

If you are NOT registered for the conference but are interested in attending and viewing all the sessions, click the below button to register. After you register, please allow the system up to 30 minutes to send a confirmation email. Once you receive your confirmation, you will be able to log in, build your agenda and view sessions.

NOT YET REGISTERED? CLICK HERE TO REGISTER FOR THE CONFERENCE

If you are interested in attending the free sessions offered at ECCE 2020, click the below button to register. After you register, please allow the system up to 30 minutes to send a confirmation email. Once you receive your confirmation, you will be able to log in.

NOT YET REGISTERED? CLICK HERE TO REGISTER FOR FREE SESSIONS ONLY

If you have any technical difficulties accessing the platform, please email <u>ecce@iplanitmeetings.com</u> or call +1800.781.1193 ext. 73.

Explore the Platform

Start planning for the sessions you want to attend! Search for sessions by session type and day. Click on the Once you are logged into the platform, start planning for the sessions you want to attend! Each session falls into one of the following session types. Each session type is listed next to the session in the agenda.

- >> Live Session happening in real time, similar to attending an in-person session at a live event.
- >> **Simulive** A simulive webinar simulates a live webinar by playing a rerecorded event at a specified time.
- >> **On-demand** An on-demand webinar is available for viewing at any time. Once the webinar is published, attendees can access it whenever they please.

Building Your Agenda

Interested in a session? Select the box next to the session to add it your agenda. After selecting the sessions you want to attend over the course of the virtual conference, select continue at the bottom of the page.

SUNDAY, OCTOBER 1	1 MONDAY, OCTOBER 12	MONDAY, OCTOBER 12 TUESDAY, OCTOBER 13 WEDNES		THURSDAY, OCTOBER 15
/		9:00 AM - 10:00 AN	1	
Time	Name			More Info
9:00 AM - 9:25 AM	I with Live Q&A Sessions) TI: Modelling and Control of Automo	tive Grade Interior Permanent N	lagnet Synchronous Motor	Q
9:00 AM - 9:25 AM	T2: Challenges and Solutions of Sma	rt Solid State Transformer		Q

After selecting continue, you will be brought to the below screen. Select "VISIT THE EVENT HUB TO ATTEND SESSIONS." From here, you will be able to view sessions and join Live Q&A sessions.

MY AGENDA

ADD SELECTED SESSION	NS TO CALENDAR				
October 11, 2020	October 12, 2020	October 13, 2020			
Opening & Plenary Session			8:30 AM - 10:45 AM	Q	
S1: Machines for Transportation			11:00 AM - 11:30 AM	Q	
S7: Isolated DC-DC Converters			11:35 AM - 12:05 PM	Q	
S5: High Speed and Bearingless Machines			11:35 AM - 12:05 PM	Q	
S6: Power Converters for Solar Energy			11:35 AM - 12:05 PM	Q	
S10: Optimization and Sizing of Energy Sto	orage Systems		12:10 PM - 12:40 PM	Q	
SS-6: Testing in the EV World - Simulators	Emulator, Dyno Based and Vehicle	e Level Testing - Technologie,, Trends, and Thoughts	1:30 PM - 3:10 PM	Q	
		HUB TO ATTEND SESSIONS			
		IE EXHIBIT HALL			

To modify your schedule throughout the event, select **"CLICK HERE TO MODIFY YOUR SCHEDULE."** Follow the above steps to add and remove sessions from your personal agenda.

CLICK HERE TO MODIFY YOUR SCHEDULE

For more information on navigating the virtual platform, please watch the instructional video here.

Add Sessions to Your Calendar

Don't forget to add sessions directly to your calendar. If you are interested in attending a session, simply click **"ADD ALL SELECTED SESSIONS TO CALENDAR"** to add to your personal computer. All sessions are in Eastern Daylight Time.

	Add To Calendar		X UR A	GENDA EXHIBIT HALL
	Choose your desired format:			
	t Apple Calendar			
	G Google (online)			
	Cutlook			
Welcome to ECO	Cutlook (online)			
You			CLOSE (6th)	
Tou		a contraine at any sin	in the second se	
	ADD AL		ENDAR	
	CLICK	HERE TO MODIFY YOUR SCHE	OULE	
Use the buttons below to attend the s	essions you registered for.			
SUNDAY, OCTOBER 11	MONDAY, OCTOBER 12	TUESDAY, OCTOBER 13	WEDNESDAY, OCTOBER 14	THURSDAY, OCTOBER 15
		Filter By Category 👻		

Viewing A Session

To view a session, select **"VIEW SESSION"** within the agenda. When prompted, enter your email address. Please note: This should be the email address you used to register.

ise the buttons below to attend	the sessions you registered for.			
SUNDAY, OCTOBER 11	MONDAY, OCTOBER 12	TUESDAY, OCTOBER 13	WEDNESDAY, OCTOBER 14	THURSDAY, OCTOBER 15
	Session	s (On-Demand with Live Q&A S	essions) 🕶	/
Category	Name		Live Q&A Link	Virtual Session Hore Link Info
11:00 AM - 11:30 AM				×
Sessions (On-Demand with L Sessions)	ive Q&A S1: Machines for Trans	portation	₽ ₽	

You will be taken to the screen below to view the session video. During the session, you can use the chat feature to interact with the authors and other attendees viewing the session.

Joining a Live Q&A

To create opportunities for interaction between authors and ECCE attendees, we have added an interactive live "meet the authors" component for tutorials, oral, poster and special sessions during the conference week (October 11-15). To join a Q&A session, select the live Q&A link found in the session details. Please note: You will not be able to join the meeting until the session time. If you enter before or after the time of the session, you will be entered into a waiting room. <u>View the agenda</u> to check the start time of each session. For more information on the live Q&A sessions, please watch the instructional video <u>here</u>.

SUNDAY, OCTOBER 11	MONDAY, OCTOBER 12	TUESDAY, OCTOBER 13	WEDNESDAY, OCTOBER 14	THURSDAY, OCTO	BER 15
	Session	s (On-Demand with Live Q&A Se	essions) -	1	
Category	Name		Live Q&A Link	Virtual Session Link	More Info
11:00 AM - 11:30 AM					
Sessions (On-Demand with Live Sessions)	e Q&A S1: Machines for Tran	sportation	C	VIEW SESSION	٩

TIP: For the best video viewing experience, we recommend using Google Chrome and enabling Flash Player.

Networking

Your ECCE 2020 experience is not only about education – be sure to take advantage of every opportunity to strike up a conversation with peers and industry experts. Within each session you can connect with attendees using the Chat widget and submit questions to speakers during live sessions using the Q&A widget.

Activities

Compete against fellow attendees throughout the event by participating in the attendee game! Questions will differ each day. Head to the exhibit hall to play or click on the play icon on the moving slide show!

Meet with Exhibitors

Head to an exhibitor's booth during the designated times and meet with our sponsors. Ask questions and learn about state-of-the-art technologies, products and solutions.

Monday, October 12th

- » 10:45-11:00 am: Dedicated Product & Service Sessions
- » 12:40-1:30 pm: Dedicated Exhibit Hours

Tuesday, October 13th

- >> 10:40-11:00 am: Dedicated Product & Service Sessions
- » 12:40-1:30 pm: Dedicated Exhibit Hours

Wednesday, October 14th

- >> 10:40-11:00 am: Dedicated Product & Service Sessions
- >> 12:40-1:30 pm: Dedicated Exhibit Hours

Thursday, October 15th

- >> 10:40-11:00 am: Dedicated Product & Service Sessions
- » 12:40-1:30 pm: Dedicated Exhibit Hours

Explore the Program

This virtual format allows us to come together to learn, share ideas and gain insight into the latest innovations within the energy conversion field, and ensures that the current landscape does not hinder anyone's ability to participate. Here is a brief overview of the program:

Plenary Sessions

ECCE 2020 features four plenary talks on the challenges in the energy conversion industry. The plenary sessions will be live on the morning of Monday, October 12, following the ECCE opening ceremony. Recorded videos of the plenary sessions will be available on the ECCE virtual event platform as video on-demand through November 16, 2020. The plenary sessions are free for everyone this year, but you must be registered to attend. Register <u>here</u>.

Tutorials

There are 14 tutorials at ECCE 2020. All tutorials are video on-demand starting October 9 through November 16, 2020. To provide opportunities for interaction with the tutorial instructors, a 25-minute live "meet the instructor" session for each tutorial has also been created. To follow the tradition of ECCE, those live tutorial "meet the instructor" sessions are scheduled on Sunday, October 11. For those watching the tutorial videos in advance, those "meet the instructor" sessions can serve as Q&A sessions. If you do not have a chance to watch the tutorial videos, the live sessions will be a great opportunity for you to learn more about the tutorials before you watch the videos on your own time.

Technical Paper Sessions

959 papers accepted by ECCE 2020 are grouped into 62 Oral Sessions and 36 digital poster sessions. All these sessions have on-demand videos of the presentations that are available to view until November 16, 2020. Please check the technical program for the schedule of each live "meet the authors" sessions. Technical program registration is required to access the special sessions.

Special Sessions

ECCE 2020 features 20 live or simulive special sessions throughout the conference week, October 11-15, 2020. Those special sessions are strongly oriented towards the latest industrial interests and technology trends, as well as the latest collaboration opportunities between industry and academia. There are two free special memorial sessions dedicated to Prof. Tom Lipo who passed away in 2020.

There are two types of special sessions, 1) panel discussions which are live panel sessions without formal presentations; 2) simulive videos broadcast in real time followed by a live discussions and Q&A. Videos in the simulive sessions will become videos on-demand and are accessible through November 16, 2020. Please check the ECCE program for the special session schedules. Technical program registration is required to access the special sessions.

WIE

ECCE 2020 WIE committee has organized a special session featuring "Dealing with Public Health Emergence: Online Life and Advanced Technologies in Remote Education." The tradition of WIE breakfast talk at ECCE has been converted to two WIE discussion sessions with the topic on "Mentors + Advocates: How to be one + How to find one."

Student Activities

ECCE 2020 features a number of student activities. We continues the tradition of student project demonstration in ECCE 2020. Those around 20 projects will be showcased in ECCE virtual event platform through short videos. The student mentorship round table event will be hosted online this year, too. More details are available at ECCE website.

Award Session

IEEE Power Electronics Society and IEEE Industry Applications Society has organized the annual Award Ceremony this year at ECCE2020 virtual. This Award Session will be video on demand featuring the major IEEE and society awards as well as newly elevated IEEE Fellows from the societies. The Award Session is free to access - please join and congratulate the awardees through the session chat function.

Technical and System Requirements

The following specifications are recommended for an optimal virtual conference experience.

Supported System Configurations

Webcasts

- >> Windows 10+ (Microsoft Edge, Firefox, or Chrome)
- » Apple Mac OS 10.10+ (*Latest Firefox, Safari, or Chrome)
- »Android 9+ (Chrome Browser Only)
- » Apple iOS 12+ (*Latest Safari Browser)

If you are using an unsupported version of a Windows, Mac, or Linux operating system, you may experience difficulty viewing and/or listening to the event.

We recommend using a laptop or desktop computer while attending virtual conference sessions. While it may be possible to use a tablet or other mobile device, the smaller screen may make it a less than optimal experience.

Internet Browsers

- » Microsoft Edge (*Latest)
- >> Mozilla Firefox (*Latest)
- » Safari (*Latest, Mac Only)
- » Google Chrome (*Latest)

Internet Connection

Before you access the event, you should ensure that your browser is configured to stream media. For Audio events, we recommend a minimum Internet connection of 128 Kbps. For Video events, a minimum Internet connection of 800 Kbps is recommended for an optimal experience. All session times are in Eastern Daylight Time.

Sunday, October 11, 2020 Tutorial – Meet the Instructors

	Tutonai	Meet the matuctors	
9:00AM-11:25AM	Virtual 1	Virtual 2	Virtual 3
»» 9:00AM-9:25AM	T1: Modelling and Control of Automotive Grade Interior Permanent Magnet Synchronous Motor	T2: Challenges and Solutions of Smart Solid State Transformer	T3: GaN-Based Power Converter Ecosystem Design: Magnetics, Gate Driver IC, and Applications
»» 9:30AM-9:55AM	T4: Physics-based Modeling and Control of PWM Converters	T5: Grid-forming Inverters, Virtual Synchronous Machines, and Power Electronics-enabled Autonomous Power Systems	T6: Preparing for the Opportunities and Challenges of WBG-Based Motor Drives
» 10:00AM-10:25AM	T7: Design Considerations for Large Format Lithium-ion Battery Systems	T8: Application of Topology Optimization Techniques in Innovative Motor Design	T9: High-efficient, High-reliable Energy Storage Power Conversion Systems (PCS) for Increased Renewable Energy and Electric Vehicle Integration
» 10:30AM-10:55AM	T10: Electrical Insulation Stresses in PWM-driven Electric Machines	T11: Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	T12: Design and Integration of Photovoltaic and Energy Storage Converters
» 11:00AM-11:25AM	T13: Analysis, Simulation, and Implementation of Vector Control: An Extremely Low-Cost Laboratory	T14: Health-conscious Fast Charging Strategies and Battery Management Systems for Electrified Autonomous Transportation	
AFTERNOON		Video on demand at your flexibility	

2020 IEEE ENERGY CONVERSION CONGRESS & EXPOSITION°

Live/Simu-Live Session Schedules

All session times are in Eastern Daylight Time.

Monday, October 12, 2020

			monday, ootober					
8:30AM-8:45AM			Opening	(ON24 Live)				
8:45AM-10:45AM		Plenary Session (ON24 Live) Prof. Anna Stefanopoulou Energy Institute Director, William Clay Ford Professor of Technology, Professor of Mechanical Engineering, University of Michigan, Ann Arbor The price of degradation — The value of prognostics – Opportunities and Needs in Battery Health Estimation Dr. John A. Cavolowsky Director, Transformative Aeronautics Concepts Program, NASA Aeronautics Research Mission Directorate (ARMD). NASA Aeronautics Strategies for Hybrid/Electric Propulsion and Transforming Aviation Rob Del Core Assistant Vice President, Fuel Cell Power System and Hydrogen Infrastructure, Technology and Strategy Group, Ricardo North America Current and Future Outlook of Hydrogen Fuel Cell on Multiple Market Sectors John 'Sam' Holeman Vice President, System Planning and Operation, Duke Energy System Operations -Defenders of the Grid- Past, Present, Future						
10:45AM-11:00AM	Sponsorship Session							
11:00AM-12:40PM	Virtual 1	Virtual 2	Virtual 3	Virtual 4	Virtual 5	Virtual 6	Virtual 7	
» 11:00AM-11:30AM	S1: Machines for Transportation	S2: Power Converter Controls in Wind and PV Systems	S3: DC-DC Converters - Switched Capacitors and Datacenter Applications	S4: Wide-bandgap Semiconductors 1	SS1-A: Prof. Tom Lipo Memorial Session 1	SS-2: SiC Power Converters- based Grid Infrastructure: Technologies, Challenges, and Grid Applications	SS-3: Electric Vehicles: Implementation and Grid Interactive Applications	
» 11:35AM-12:05PM	S5: High Speed and Bearingless Machines	S6: Power Converters for Solar Energy	S7: Isolated DC-DC Converters	S8: Modern Tools for Detecting and Identifying Electrical System Parameters or Attacks				
» 12:05PM-12:40PM	S9: Optimization in Electric Machines	S10: Optimization and Sizing of Energy Storage Systems	S11: DC-DC Converters for Electric Transportation	S12: Wide-bandgap Semiconductors 2				
12:40PM-1:30PM			Sponsor	ship Session				
» 1:30PM-3:10PM	Video on demand at your flexibility				SS-4: Recent Successes in Accelerating the Adoption of Wide Bandgap Power Electronics	SS-5: Standard development for power electronics systems / products	SS-6: Testing in the EV World - Simulators, Emulator, Dyno based and Vehicle level testing - Technologies, Trends, and Thoughts	

All session times are in Eastern Daylight Time.

Tuesday, October 13, 2020

9:00AM-10:40AM	Virtual 1	Virtual 2	Virtual 3	Virtual 4	Virtual 5	Virtual 6	Virtual 7
» 9:00AM-9:30AM	P1: NVH, Reliability and Machine Diagnostics	P2: EV Charging Infrastructure	P3: DC-DC Converters 1	Technologies and ApplicationsProf. Lipo's Memorialand Use of Standards inCy	Prof. Lipo's and Use of Memorial Standards in	and Prof. Lipo's and Use of Cyberse Memorial Standards in Power E	SS-8-A: Cybersecurity in Power Electronics
» 9:35AM-10:05AM	P5: Electric Machines Materials, Losses, Thermal, Manufacturing, Modelling Issues	P6: Direct Drive, Actuators, Magnetic Gearing and Non-conventional Machines	P7: DC-DC Converters 2	P8: Converters for AC and DC Microgrids	Session 2	the Industrial Drives and in the Renewable Energy Grid Integration	
» 10:10AM-10:40AM	P9: Electric Machines (IPMSM and Synchronous Reluctance)	P10: Transportation Electrification and Battery Management Systems	P11: AC-DC Converters and AC-AC Converters (Topology, Modulation, Control)	P12: Solid State Transformers, V2G, and Power Converter Control			
10:40AM-11:00AM			Sponsor	ship Session			
» 11:00AM-11:30AM	P13: Electric Machine Applications in Automotive, Aerospace, Renewable, Robotics	P14: Converters for Renewable Energy	P15: DC-AC Converters	P16: Statistical Methods Applied to Power Electronics System Applications	SS-9: Innovation through failing better	SS-10-A: Sustainable Energy Systems and Opportunities for Power Electronics	SS-8-B: Cybersecurity in Power Electronics
» 11:35AM-12:05PM	P17: Electric Machines (Synchronous, Induction, Switched Reluctance, Flux-Switching)	P18: Controls in Alternative Energy Applications	P19: Multilevel Converters (Topology, Modulation, Control)	P20: Grid Interactive Converters			
» 12:10PM-12:40PM	P21: New Technologies, Sensors, Reliability and Testing for Electric Drives	P22: Microgrid Applications	P23: Power Quality, Reliability, Diagnostics and Fault Analysis	P24: Converter Control and Modeling 1			
12:40PM-1:30PM			Sponsor	ship Session			
» 1:30PM-2:00PM	P25: Control of Electric Drives	P26: Distributed Energy Resources and Utility Interactions	P27: Wide-bandgap Semiconductors	P28: Converter Control and Modeling 2	SS-11: Powering the Future: Criticality	SS-10-B: Sustainable Energy Systems and Opportunities	SS-12: Heavy-duty All-electric Urban Aerial Vehicles
>> 2:05PM-2:35PM	P29: Drive Applications	P30: Renewables and Energy Storage	P31: Gate Drivers, Modules and Packaging	P32: Converter Control and Modeling 3	of System Engineering for E-Mobility	ngineering for Power r E-Mobility Electronics nd Automated	(UAVs)
»> 2:40PM-3:10PM	P33: Magnetic and Insulating Materials and Thermal Management	P34: HVDC, FACTS, Implementation and Reliability of Power Converters	P35: Other Devices, Components, and Materials	P36: Power Converter EMI and Stability	Vehicles		

All session times are in Eastern Daylight Time.

Wednesday, October 14, 2020

9:00AM-10:40AM	Virtual 1	Virtual 2	Virtual 3	Virtual 4	Virtual 5	Virtual 6	Virtual 7	
» 9:00AM-9:30AM	S13: Additive and Alternative Manufacturing for Electric Machines	S14: Renewable Energy and Hybrid Energy Storage Systems	S15: DC-AC Three-Phase Converters	S16: Gate Drivers and Driving Techniques	SS-13: Next Generation Power-Hardware-	Generation Electronics Power-Hardware- Intensive	Electronics	SS-15-A: Electric Propulsion for Future Aero and
» 9:35AM-10:05AM	S17: AC Machines and Drives	S18: Microgrids 1	S19: Multilevel Converters 1	S20: Device and Module Packaging	in-the-Loop (PHIL) Testing of Traction Inverters:	Modeling, Control, and Implementation	Space Vehicles	
» 10:10AM-10:40AM	S21: Permanent Magnet Machines	S22: Converters for Electric Vehicles	S23: AC-DC and AC-AC Converters	S24: Circuits and Topologies for Wind Power Conversion	Challenges and Opportunities			
10:40AM-11:00AM	AM-11:00AM Sponsorship Session							
»11:00AM-11:30AM	S25: Thermal Analysis in Electric Machines	S26: Grid-Connected Inverters	S27: Multilevel Converters 2	S28: Batteries and Battery Converters		SS-14-B: Power Electronics	SS-15-B: Electric Propulsion for Future Aero and	
»11:35AM-12:05PM	S29: Machine Diagnostics and Protection	S30: Power Converter Control and Applications	S31: AC-DC Power Converters	S32: Microgrids 2		Intensive Power Systems: Modeling,	Space Vehicles	
»12:10PM-12:40PM	S33: Switched Reluctance and Flux Switching Machines	S34: Inverter-based Resources for Power Quality Enhancement	S35: DC-DC Converters for Renewable Energy Applications	S36 : Utility Applications of Power Electronics		Control, and Implementation		
12:40PM-1:30PM	2:40PM-1:30PM Sponsorship Session							
	Video on demand at your flexibility							

Thursday, October 15, 2020

9:00AM-10:40AM	Virtual 1	Virtual 2	Virtual 3	Virtual 4	Virtual 5	Virtual 6	Virtual 7				
» 9:00AM-9:30AM	S37: Reliability, EMI and Fault Tolerance in Electric Drives	S38: Multilevel Converters 3	S39: Grid Interactive Converter Control	S40: Tools and Techniques for the Optimization and Protection of Power Electronic Systems	SS-16: Industry vs Academia: which career path is right for you?	vs Academia: which career path	vs Academia: which career path	vs Academia: which career path	vs Academia: which career path	SS-17: Dealing with Public Health Emergence: Online Life	SS-18: Power electronics application in standalone wind/ solar based
» 9:35AM-10:05AM	S41: Predictive and Sensorless Control of Electric Drives	S42: Wireless Power Transfer in Transportation	S43: DC-AC Single-Phase Converters	S44: Reliability, Diagnostics and Fault Analysis		and Advanced Technologies in Remote Education	distributed generation system				
>> 10:10AM-10:40AM	S45: Multi-Phase Motor Drives	S46: Control and Stability of Power Converters	S47: High Frequency DC-DC Converters	S48: Wireless Power Transfer							
10:40AM-11:00AM			Sponso	rship Session							
» 11:00AM-11:30AM	S49: Noise, Vibration and Reliability in Electric Machines	S50: Battery Management Systems	S51: Power Converter Control	S52: Multilevel Converters 4		SS-19: HVdc/ MVdc/MTdc technologies and benefits to grid	SS-20: Energy Access: Technologies, Impact and The Opportunity for PELS				
» 11:35AM-12:05PM	S53: Design and Control of Electric Drives	S54: Power Converter EMI	S55: Predictive Control	S56: Dual Active Bridge	S57: Protection Devices and Solid State Circuit Breakers						
» 12:10PM-12:40PM	S58: IPM and PM Motor Drives	S59: Modelling and Stability of Converters and Systems	S60: Multilevel Converter Control	S61: Digital Control Implementation and Testing	S62: Electric Drivetrains						
12:40PM-1:30PM			Sponso	rship Session							
			Video on dem	and at your flexibility							

Plenary Session

8:45AM-10:45AM

Monday, October 12

The price of degradation – The value of prognostics – Opportunities and Needs in Battery Health Estimation Prof. Anna Stefanopoulou

Energy Institute Director, William Clay Ford Professor of Technology, Professor of Mechanical Engineering, University of Michigan, Ann Arbor

Replacing a gasoline or diesel internal combustion engine vehicle (ICEV) with an electric vehicle (EV) will zero out the direct (tailpipe) GHG emissions and depending on where it charges can have 75% lower GHG emissions. Key barriers to EV adoption include the higher first cost of EVs compared to ICEVs and the up-front investment

needed to provide charging infrastructure. The total cost of ownership and the cost of the fleet transition depends on the lower operating cost due to fuel and maintenance savings that depend on the route, utilization, and charging of the vehicle. Behind the meter, vehicle to grid and 2nd life applications can provide additional cost benefits if the battery stays healthy.

The battery state of health (SOH) is currently estimated by determining capacity (cyclable energy) and cell resistance (power capability). Unfortunately, estimating these parameters with high confidence can only be done under certain discharge patterns. Identifying the physical origin of the degradation is even more difficult but very important, because it can inform the Battery Management System (BMS) about electrode specific constraints and hence prevent further degradation. Power electronics can help identify the intrinsic "aging wrinkles" in the battery material as it ages.

NASA Aeronautics Strategies for Hybrid/Electric Propulsion and Transforming Aviation

Dr. John A. Cavolowsky Director, Transformative Aeronautics Concepts Program, NASA Aeronautics Research Mission Directorate (ARMD), NASA

NASA is making significant progress towards establishing the viability of Electrified Aircraft Propulsion (EAP) through a combination of aircraft conceptual design studies and advancement of key tall-pole technologies. Partially turboelectric and parallel hybrid candidates have been shown viable for introduction into service in the mid-

2030s, and a long-term vision has been established for a fully turboelectric system. NASA is developing key powertrain technologies that are applicable for a wide variety of aircraft configurations, including electrical machines (motors/generators), converters (inverters/rectifiers), and the underlying electrical materials for EMI filters and cabling.

In the next 5 years the goal is to narrow the focus to the most viable concepts as a means to prepare for flight demonstrations of those concepts. An electric aircraft power system test facility (NASA Electric Aircraft Testbed (NEAT)) has reached operational status at and is being used to perform both industry partnership testing and in-house NASA R&D. It is believed that the correct building blocks are in place to test a viable large-plane EAP configuration in the not too distant future.

This presentation will address the strategy behind NASA's research and development efforts to accelerate this market. It will cover the enduring electrified propulsion research needs including the development of system concepts, electric machines, converters, innovative materials, components, tools, and methods that enable the performance, reliability and durability of these systems.

Plenary Session

Current and Future Outlook of Hydrogen Fuel Cell on Multiple Market Sectors

Rob Del Core

Assistant Vice President, Fuel Cell Power System and Hydrogen Infrastructure, Technology and Strategy Group, Ricardo North America

This presentation will provide an overview on hydrogen fuel cell power technology, including but not limit to benefits, challenges, solutions and current applications on different market sectors from zero emission vehicles to renewable hydrogen powered back up power and prime power. Current US and global funding opportunities and

landscape for hydrogen technologies that shape the future hydrogen economy and energy sector will also be discussed. Case studies of selected Ricardo's hydrogen fuel cell and renewable energy projects will also be featured in this presentation.

System Operations – Defenders of the Grid – Past, Present, Future

John "Sam" Holeman Vice President, System Planning and Operation, Duke Energy

The electric grid is vital to the customers it serves. Many events have proven the belief that the electric grid is the most critical of the critical infrastructures in the world. It has been described as the most complex machine man has ever made. Research links prosperity and education to the availability of a reliable and secure electric grid. The product (electrons) traveling at close to the speed of light and consumed almost as guick as it is generated with no scalable ability to store it (at least not yet). While the

grid has undergone changes for over the past hundred years, the changes we have seen recently and expect over the next several decades accelerate that pace of change to say the least. As a wise industry leader once told me, we are trying to re-wire our house while still living in it. Any of us who have remodeled a home while still living in It know how challenging, frustrating, and difficult this proposition is.

We are facing fundamental changes in the electric gird we have benefited from for over a century. From the decarbonization of generation, development of micro-grids, potential of new nuclear technologies, development of solar and wind resources, emerging energy storage technology, and more intelligent customer technology, the grid is undergoing and will undergo real change in coming years. But in spite of that change, or perhaps because of that change, the role of the System Operator becomes more important than ever. Throughout the history of interconnected system operations, the System Operator – the Defender of the Grid – has always been there to act on behalf of the users of the electric grid – our customers and communities. So how do we bridge between what we have now, what we will have in 5 years, and what we will have 20 years from now. At the end of the day, our customers expect for the lights (or whatever lights turn into 50 years from now) to stay on. That metaphor – keeping the lights on 24X7X365, continues to be the mission of the System Operator. It should be a wild and rewarding ride.

Special Sessions

These presentation-only sessions are focused on timely and practical topics in the field.

Monday, October 12

11:00AM-12:40PM

Special Session 1-A | In Memoriam – Thomas A. Lipo Life and Achievements

Presenter: Bulent Sarlioglu, University of Wisconsin-Madison, United States

Chairs: Thomas Jahns, Bulent Sarlioglu

Speakers and Presentations:

Designing a Magnetic Gear for an Electric Aircraft Drivetrain [736]

Ho Yin (David) Wong¹, Hossein Baninajar^{1,2}, Bertrand Dechant², Jonathan Bird^{1,2} ¹Portland State University, United States; ²FluxMagic, Inc., United States

Methods to Determine the Stator Inter-Turn Short Circuit in an Induction Motor with Installed Rotor [312]

Dimas Anton Asfani¹, I Made Yulistya Negara¹, I Gusti Ngurah Satriyadi Hernanda¹, Daniar Fahmi¹, Eduard Muljadi², Robert M. Nelms²

¹Institut Teknologi Sepuluh Nopember, Indonesia; ²Auburn University, United States

Investigation of Asymmetric Consequent-Pole Hybrid Excited Flux Reversal Machines [11]

F.R. Wei, Z.Q. Zhu, X.Y. Sun The University of Sheffield, United Kingdom

Comparative Study of Optimally Designed Coreless Axial Flux PM Machines with Litz Wire and with PCB Stator Windings [1494]

Narges Taran, Murat G. Kesgin, Peng Han, Dan M. Ionel University of Kentucky, United States

Tuesday, October 13

9:00AM-10:40AM

Special Session 1-B | In Memoriam – Thomas A. Lipo Major Technical Contributions

Presenter: Thomas Jahns, University of Wisconsin-Madison, United States

Chairs: Thomas Jahns, Bulent Sarlioglu

Speakers and Presentations:

Evaluation of Current Distortion Improvement in an Asymmetrical Six-Phase Induction Motor Drive by using SiC MOSFETs with Reduced Dead Time [237]

Ajay Kumar Morya¹, Alejandro G. Yepes², Jesús Doval-Gandoy², Hamid A. Toliyat 1 ¹Texas A&M University-College Station, United States; ²University of Vigo, Spain

Overload Performance Prediction of PM and Synchronous Reluctance Machines for Traction Applications [449]

Matteo Carbonieri¹, Wen L. Soong², Amin Mahmoudi³, Solmaz Kahourzade³, Nicola Bianchi¹ ¹University of Padova, Italy; ²University of Adelaide, Australia, Australia; ³Flinders University, Australia; ⁴University of South Australia, Australia

Performance Comparison between SiC Two-Level and Si Three-Level AFE Converters [641]

Marzieh Karami¹, Rangarajan Tallam1, Kenneth E. Pagenkopf², Robert Cuzner³ ¹Rockwell Automation, United States; ²Cramer Magnetics, United States; ³University of Wisconsin-Milwaukee, United States

SS-2 | SiC Power Converters-based Grid Infrastructure: Technologies, Challenges, and Grid Applications

Organizer: Akanksha Singh, NREL

The adoption of medium voltage (MV) SiC-based power electronics in the electric power grid would provide an important tool for ongoing efforts in grid modernization. The potential range of directly-connected MV power electronic converters for the future power grid infrastructure includes but is not limited to: MV to low-voltage conversion; AC to DC conversion to easily integrate inherently DC systems such as photovoltaics, battery systems, etc.; and MV to MV back-to-back converters which allow full asynchronous power flow control between intertied distribution systems. With the increasing commercial availability of high-quality and reliable SiC devices that can operate at voltages relevant to MV distribution utility applications, it is critical to develop a technical pathway for such applications to ensure the successful, widespread use of high-voltage SiC devices (3.3kV, 6.5kV, 10kV devices) and modules. This special session will focus on – a) capabilities and challenges enabled by the high-voltage SiC devices, b) the latest research progress and industry practice on design, development, and validation of high-voltage SiC devices, power modules, and power converters, and c) additional grid services and applications that can be realized using such power electronic converters, in advancing the power grid infrastructure

Speakers and Presentations:

Capabilities and challenges in using medium voltage (MV) SiC devices in advancing the grid infrastructure

Dr. Subhashish Bhattacharya Professor, North Carolina State University, USA

Challenges and future of the direct MV grid connected power onverters for asynchronous power flow

Dr. Jin Wang, Professor Ohio State University, USA

Grid applications and grid services enabled by MV direct connected power converters for proliferation and extensive renewable energy

Dr. Barry Mather, Group Manager National Renewable Energy Laboratory, USA

MV SiC Based Power Conditioning Systems for Microgrids, Flexible CHP and Manufacturing Plants

Dr. Fred Wang, Professor The University of Tennessee, Knoxville, USA

Potential and challenges of using SiC devices in the integration of the electric charging infrastructure to the power grid

Dr. Sheldon Williamson Professor, Ontario Tech University, Canada

Switch-Capacitor Modular Multilevel Converter (SC-MMC) to Achieve Inductor-less, Filter-less, and Transformer-less Medium-Voltage Power Conversion for High Power Density Applications

Robson Bauwelz Gonzatti, Rami Yehia, Dr. Fang Z. Peng *Florida State University, USA*

SS-3 | Electric Vehicles: Implementation and Grid Interactive Applications

Organizers: Xiaonan Lu, Po-Tai Cheng

Electric vehicles (EVs) play a significant role in modern transportation systems given their remarkable contribution to carbon emission reduction and high potential in support of grid services. The cutting-edge technologies range from device and converter level innovations to system-level grid interactions. Further, given the wide deployment of renewable energy and their inevitable stochasticity, EVs as mobile energy storage can help mitigate the uncertainties induced by renewable generation. In this special session, speakers with comprehensive industry-oriented experience are invited to introduce the state of-the-art of EV technologies with a balance between field practice and advanced innovations.

Speakers and Presentations:

EV Charging: An OEM Perspective

Dr. Rashmi Prasad Senior Researcher, Propulsion Systems Research Lab, General Motors Research & Development

Overview of Power Electronics for Next-Generation Mobility

Dr. Goh Teck Chiang Lead Engineer, Toyota Central R&D Labs, Inc.

Medium Voltage Input 400-kW Extreme Fast Charger by utilizing Solid-State-Transformer Technology Dr. Charles Zhu

Vice President, Delta Electronics (Americas) Ltd.

Propulsion Systems Design Optimization with High Reliability in Mind

Dr. Yue Cao Oregon State University

Monday, October 12

1:30PM-3:10PM

SS-4 | Recent Successes in Accelerating the Adoption of Wide Bandgap Power Electronics

Organizer: Power America, Victor Veliadis & Jim LeMunyon

In accelerating adoption of wide bandgap semiconductors, their must be a focus on increasing the number of applications for both SiC and GaN technologies that are most likely to deliver near term improvements in systems that can benefit from the superior efficiency, reliability, and total cost of ownership offered by SiC and GaN. This session will focus on challenges and recent successes in several key applications for SiC and GaN that have been identified by PowerAmerica's members in the PowerAmerica Technology Roadmap.

Speakers and Presentations:

Wide-Band-Gap Power Semiconductor Devices for Automotive Applications

Chingchi Chen Ford Research and Engineering

Solid-State Circuit Breakers - a Uniform Platform for Power Distribution

Ryan Kennedy Atom Power

Challenges in Testing SiC Devices

Joshua MacFie GROUPNire

SS-5 | Standard development for power electronics systems / products

Organizer: Fang Deng, Whirlpool Corporation

This session provides a comprehensive example of engaging critical technical scopes and competencies in the design process of a power electronics and/or motor drives system. This example collected from five individual research cases ranging from the concept approval to product development phase provides the methodology and standardization for the advanced product design. Approaches via optimization and trade-off analysis of a such system to well balance between performance, reliability, safety and cost are demonstrated in this session. In addition, knowledge and insights in critical performance assessment such as NVH quality provides a specific perspective in design direction and focus, hence leading to practical solutions confined with the overall design targets. In particular, as modern electrification advances the power electronics with fast switching capability is favorable for high controllability, however imposes challenges to retain the motor insulation capability. Rendering solutions to overcome those challenges, system level design strategy is explored and demonstrated in this session, showcasing that the in-depth knowledge, expertise and system view all have played significance in outputting a power electronics motor drives system design achieving most performance benefits with high feasibility and practicality.

Speakers and Presentations:

Design and Optimization of High Performance Synchronous Machines

Dr. Ian P. Brown Associate Professor, Illinois Institute of Technology, Chicago, IL, USA

Standard practices in electric machine designs to address NVH issues in regards to a mass production environment

Dr. Rakib Islam Senior motor engineering specialist, Dura Automotive Systems, Auburn Hills, MI, USA

High-Frequency over Voltage Transients in Motor Drive Systems

Dr. Behrooz Mirafzal Associate Professor, Kansas State University, Manhattan, KS, USA

Traction Inverter Development for Electrified Vehicles

Dr. Rashmi Prasad Senior Researcher, Electric Drives and Power Electronics Systems Group, GM Global R&D Center, Warren, MI, USA

Dv/dt Filters for WBG Variable-Frequency Drives

Dr. Jiangbiao He Assistant Professor, Department of Electrical and Computer Engineering, University of Kentucky, USA.

SS-6 | Testing in the EV World - Simulators, Emulator, Dyno based and Vehicle level testing - Technologies, Trends, and Thoughts

Organizers: Uday Deshpande & Brij N. Singh

The large-scale proliferation of EVs requires prompt yet thorough verification of electric drives (eDrives) prior to their commissioning at system level. A highly integrated test platform for the eDrive systems is required to prove system functionality under operating conditions and assessment of performance within design constraints. For example, eDrive system's performance must be assessed for all sub-components from the battery to the wheel prior to its deployment in the EV. The interdependency between components, modules and subsystems necessitate that test platforms and test approaches follow systems engineering practices. The eDrive system development cycle can be accelerated by effectively utilizing virtual testing platforms followed by the Power Hardware-in-the-loop (pHiL) simulation prior to the minimal in-lab design verification at maximum loads under real world ambient conditions. In the presentations and discussions carried out in this special session, the speakers will share their experiences gained from eDrive system design, development, and commissioning. It will be emphasized that design revisions could be avoided if data collected from the virtual and pHiL test test-ups are appropriately used by the design engineering in best practices such as data driven design engineering processes.

Speakers and Presentations:

Real-time simulators – focus on electric motor models

Dr. Amitkumar K.S., Opal-RT Technologies

Rapid development of electrification programs with emulator(pHIL) based testing

Dr. Uday Deshpande, Bill Peterson *D&V Electronics*

Battery testing and Characterization

Prof. Saeid Habibi McMaster University

Laboratory Testing and Emulation of Power Inverters for Heavy-Duty Vehicles

Dr. Brij N. Singh John Deere

SS-7 | Adoption and Use of Standards in the Industrial Drives and in the Renewable Energy Grid Integration

Organizers: Joe Pavia & Kevin Lee, Eaton

The rise of intermittent solar gives rise to the string inverters, which provides grid management benefits. String inverters are already dominant in many global markets and the use of string inverters in large-scale U.S. projects is expected to quadruple by 2025. At Eaton, we know space is always at a premium, time is limited and cost matters. For example, Eaton offers space-saving AC solar recombiner integrates circuit breakers or fuse protection and a disconnect all within one enclosure designed for solar PV string inverters.

Speakers and Presentations:

High Penetration of Renewable Energies through Power Electronics Joseba Arza *Ingeteam, Future Electrical Grid*

Energy Efficiency and Converter Topology Joseba Arza Ingeteam, Standards in the Traction Industry

Close-Coupled Solar Switchboard / Transformer with String Inverters

Joe Pavia Eaton

Interpretation of IEEE 519-2014 For Industrial and Commercial Applications

Mahesh Swamy IEEE Industrial Drives Committee

SS-8-A, SS-8-B | Cybersecurity in Power Electronics

Organizers: Osama Mohammad, Burak Ozpineci

The IEEE Workshop of Cybersecurity of Power Electronic Systems (CyberPELS) provides a common forum and networking platform for industry experts, researchers, and academia to share technology updates, research findings, lessons learned, and best practices in the areas of cyber-secure power electronic systems. This special session is a part of the 1-day CyberPELS Workshop being held before ECCE and will comprised of a mix of industry and academic leaders describing the latest advances in various aspects of cybersecurity for power electronic systems.

Speakers and Presentations:

System control & cybersecurity challenges for high penetration solar grids

Jeremiah Miller US Department of Energy

Wide Bandgap and Ultra Wide Bandgap Power Switching Devices for Secure High Frequency, High Voltage and Power Dense Applications

Lynn Petersen Office of Naval Research

TBD Frede Blaabjerg *Aalborg University*

An active defense framework through dynamic watermarking in power electronically-interfaced distribution grids

Prasad Enjeti Texas A&M University

A Comprehensive Assessment and Detection Methodology for Power Electronics Based Smart Grids (PESG) due to Cyber Attacks

Jinan Zhang University of Georgia

Resilient Operation of Cooperative Grid-Forming Converters Against Cyber Attacks

Subham Sahoo Aalborg University

An Active Detection Scheme for Cyber Attacks on Grid-tied PV Inverters

Le Xie Texas A&M University

Resilient Distribution Systems Operation with Reconfigurable Cyber-Physical Networks Using Situationaware Power Electronics

Xiaonan Lu Temple University

SS-9 | Innovation through failing better – Panel Session

Organizer: Peter Wung

The latest results from the cognitive sciences tells us that in order to motivate innovation and creative thinking we need to fail in order to learn lessons that are critical for our thinking process. We have heard the mantra of failing fast in order to learn lessons fast and then moving on to success. The assumption is that by failing faster that we would be able to get at the right success formula faster, thereby eliminating all the time spent chasing down the rabbit holes that pepper the scientific discovery landscape.

Prof. Stuart Firestein, a biology professor at Columbia University demurs. In his book titled: Failure, Firestein writes that we as scientists and engineers should be treat failure as an integral part of the process to discovery and pioneering new ground in our scientific work. In other words, we must go through the failure cycle in order to truly innovate.

Conferences like the ECCE however, only populate our programs with successful results. Likewise, the IEEE publications will only publish papers recounting the successes. These results are not the fault of the organizers as the academic and industrial communities emphasizes the successful solution, cursory explanations of errors, and successful applications. It is human nature to give only the good news; indeed, there are no small amount of embarrassment and shame associated with the act of revealing our failures and errors. As such, we are presenting an illusory and unreal snapshot of the research landscape, where every researcher succeeds in every problem they work on. We all know that this is not true, yet we will still only publish our success stories and hide our failures. By doing so, we are depriving the next generation of researcher a true accounting of the hardship, mental puzzlement, and resilient pursuit of the reasons of the failures in an innovative research and development process. More importantly, we are creating mythologies and fiction surrounding the critical and necessary process of the scientific method: hypothesis, experiment, fail, reformulate, and repeat.

Firestein narrows down the vast superset of failures by first eliminating the mistakes and errors, the simple miscalculations, those failures that often results in an apology: I am sorry I should have known that.

What is necessary are good failures, failures which feeds the discovery process, and propels the research forward. To quote Samuel Beckett: Ever Tried. Ever failed. No matter. Try again, Fail again. Fail better

Speakers and Presentations:

Frede Blaabjerg. Professor Department of Energy Technology.at Aalborg University, President of IEEE Power Electronics Society

Jerry Hudgins Chairperson, Department of ECE, University of Nebraska-Lincoln

Thomas Jahns Grainger Professor of Power Electronics and Electrical Machines, WEMPEC, University of Wisconsin

Manoj Shah Principal Engineer, GE GRC. Professor of Practice, RPI

SS-10-A, SS10-B | Sustainable Energy Systems and Opportunities for Power Electronics

Organizer: Sudip K. Mazumer

Energy sustainability and sustainable energy systems are the basis of long-term sustenance of human existence, advancement, and prosperity, social equity and mobility, energy security and surety, and environmental sustenance. It is, therefore, incumbent on us – the IEEE Power Electronics Society (PELS) – to play its part in making an attempt to explore, propose, pursue, and validate ideas that attempt to at least partly address and resolve these grand challenges using plurality of pathways that address plurality of issues ranging from economy of scale, universality, environmental compatibility, compactness and portability, energy surety and security to enhanced energy-conversion efficiency and efficacy. Overall, the main objective of this Special Session, championed by IEEE PELS Technical Committee on Sustainable Energy Systems (TC5), is to bring together the latest developments in inventions, innovations, and applications of power electronics for sustainable energy systems and energy sustainability. In that context, a further goal is to bring together leaders and experts in related areas to share their vision and expertise with the broad ECCE'20 audience. The goal is to have a series of invited presentations throughout a half-day event and intersperse them at regular intervals with questions from the target audience to create an engaging and exciting session.

Speakers and Presentations:

Design for Reliability in Renewable Energy Systems

Frede Blaabjerg Aalborg University, Denmark

Technology Roadmap of Power Electronics for Distributed Energy Resources

Liuchen Chang University of New Brunswick, Canada

Electrifying Innovations: Materials to Systems

Isik Kizilyalli ARPA-E, USA

Resilient Power Systems with High Penetrations of Power Electronics Interfaced Renewable Generation

Feng Qui Argonne National Lab, USA

Experimental Analysis of 166 kW Medium-Frequency Medium-Voltage Air-Core Transformer

Johann Kolar ETH Zurich, Switzerland

Differential-Mode Converters

Sudip K Mazumder University of Illinois, USA

Design of High-Frequency Transformers for Power Electronic Converters

Juan Balda University of Arkansas, USA

Power Electronics Intelligence at the Network Edge (PINE) – to enable near 100% Solar Penetration in Distribution Grid

Prasad Enjeti Texas A&M University, USA

SS-11 | Powering the Future: Criticality of System Engineering for E-Mobility and Automated Vehicles - A Roundtable Discussion

Organizers: Anne O'Neil, Jace Allen

Vehicles have greatly evolved from their early days as an assembly of electro-mechanical parts. Modern luxury vehicles can contain nearly 100 million lines of software code, all of which is processed by up to 100 microprocessors networked throughout the vehicle. Developing functionality and ensuring functional safety requires managing interactions and tradeoffs throughout design development and testing. Ever-increasing interdependencies and vehicle complexity drive the need to adopt System Engineering practices and expertise. As vehicles move towards autonomous driving, automation and e-mobility, the levels of integration only increase, as functionality depends upon interactions between Hardware, Software, Sensors, Al, Data analytics, and Chassis and Suspension systems. Hear experts discuss the critical role of System Engineering to manage the challenges of complexity in innovating vehicle solutions.

Speakers:

Dante Crockett Chief Engineer, Features – Systems Engineering, Product Development Center, Ford Motor Company

Jace Allen Director, ADAS/AD Engineering and Business Development, dSPACE Inc.

Yue Guo Professor and Chair of Battery Systems, Coventry University

Joaquin Nuno-Whelan VP of Hardware, Motional

SS-12 | Heavy-duty All-electric Urban Aerial Vehicles (UAVs)

Organizer: Yue Cao

As we are heading to all-electric intercity passenger aircraft, emerging Urban Aerial Vehicles (UAVs), unmanned or manned, serve as stepping stones to demonstrate start-of-the-art electrification technology. We are already familiar with light-weight drones in cinematography, entertainment, and industrial inspections. However, technology challenges still exist in larger scale (10x-100x) commercial applications such as package delivery drones or passenger flying taxis. Such aerial vehicles are the future urban mobility solutions and face unique design requirements. In this panel, we will focus on such heavy-duty all-electric UAVs, and particularly their propulsion systems. We will review the existing effort in related areas but more importantly, look at the future opportunities specially tailored for UAVs.

Speakers and Presentations:

Challenges and Opportunities in Future eVTOL Propulsion Systems

Satish Rajagopalan Research Science Manager, Amazon Prime Air

Energy Impacts of Urban Air Mobility

Dominik Karbowski Technical Manager, Argonne National Laboratory

Safety and Exergy Optimization of Heavy-Duty Electric Aerial Propulsion Systems with Solid-State Energy Conversion Technology

Rodger Dyson Technical Lead, NASA Glenn Research Center

High-Speed Switched Reluctance Motor Drives for UAV Propulsion Systems

Ali Emadi President and CEO, Enedym Inc.; Professor, McMaster University

Electrical Machine Innovative Solutions for Aircraft System Challenges

Sara Roggia Senior Research Engineer, SAFRAN

More-electric or All-electric Aerial Vehicles for a Sustainable Future

Bulent Sarlioglu Professor, University of Wisconsin-Madison

SS-13 | Next Generation Power-Hardware-in-the-Loop (PHIL) Testing of Traction Inverters: Challenges and Opportunities

Organizers: Ahmad Arshan Khan and Seung-Ki Sul

As automotive OEMs and inverter suppliers commit billions of dollars in the area of vehicle electrification, there is a growing need for fast, efficient, low cost, reliable testing and validation of inverters. Unfortunately, the old and traditional way of inverter testing at motor dyno is expensive, test coverage limited, time-consuming and requires motor hardware availability. Most of these limitations can be successfully solved by Power Hardware-in-the-loop (PHIL) testing and validation approach. In this special session, researchers from academia and PHIL manufacturers will share various existing solutions, opportunities and challenges in the area of Power Hardware-in-the-loop testing of traction inverters.

Speakers and Presentations:

Power electronic validation and testing - the right test methodology on the PowerHiL

Julian Koch System Test Manager, AVL Software & Function, Germany

Thorsten Fischer Team Manager System Test Management E-mobility & Head of PowerHiL, AVL Software & Function, Germany

Real-time emulation of IPMSM with Dynamic Motor Emulator (DME) for PHIL testing

Yong-Cheol Kwon CEO, Plecko, South Korea

Fast, Accurate, and, Repeatable Testing of Inverters Through Effective Machine emulation

Joshua Love Senior Power Application Engineer, Keysight Technologies, USA

Real-time Simulation and Advanced Power Emulators for Vehicle Electrification Testing – focus on electric motor models

Amit Kumar KS Simulation & PHIL Specialist, OPAL-RT, Canada

Uday Deshpande, CTO, D&V Electronics, USA

Brij N. Singh Senior Staff Engineer, John Deere Electronics Solutions, USA

FPGA Based High Bandwidth Motor Emulator for Interior Permanent Magnet Machine

Utilizing SiC Power Converter

Yukun Luo, Wensong Yu, Iqbal Husain North Carolina State University, USA

High-voltage power hardware-in-the-loop system – Scalable model-based emulation environment for testing and validation of traction inverters

Ren Fang Project Manager, dSPACE, USA

SS-14-A, SS-14-B | Power Electronics Intensive Power Systems: Modeling, Control, and Implementation

Organizers: Xiaonan Lu, Bo Chen

There are tremendous research efforts and industry practice of enhancing grid resilience and stability with increasing penetration of inverter-based resources, focusing on grid-forming and grid-following capabilities, localized and network interconnected microgrids, advanced substation modeling and control, etc. The challenges are identified in multiple sections throughout the electric grids, ranging from grid-edge customers to large-scale distribution systems and bulk power grids. Innovative technologies are being developed and field-validated towards modernized power grids. The session serves to share the latest research progress and industry practice of grid-interactive power electronics and covers a broad audience group, including manufacturers, utilities, national labs, and universities.

Speakers and Presentations:

Impacts to BPS Reliability under Increasing Penetrations of Distributed Energy Resources

Dr. Deepak Ramasubramanian Engineer Scientist III at Electric Power Research Institute (EPRI)

Advanced Grid-forming Controllers for Low-inertia Systems

Prof. Florian Dörfler Department of Information Technology and Electrical Engineering, ETH Zürich

Cyber-induced Microgrid Resilience Issues: Analysis, Control, and HIL Testing

Dr. Jianzhe Liui Argonne National Laboratory

Frequency-Domain Stability Analysis of Grid-Connected Converters

Prof. Xiongfei Wang Department of Energy Technology, Aalborg University

Control of Parallel Grid-forming Inverters: Experiences from Lab and Field Tests

Dr. Ulrich Münz Group Lead for Autonomous Systems and Control, Siemens Corporation

Advanced EMT Simulation for Modern Power Grids with GFM and GFL Controls: An Industry Perspective

Andy Hoke Senior Engineer, National Renewable Energy Laboratory (NREL)

Hybrid AC and DC Distribution Protection

Dr. Lisa Qi Senior Principal Scientist, ABB

Dynamic Microgrids for Grid Resiliency Enhancement: Design and Implementation

Dr. Bo Chen Energy Systems Division, Argonne National Laboratory (ANL)

Prof. Xiaonan Lu College of Engineering, Temple University

SS-15-A, SS-15-B | Electric Propulsion for Future Aero and Space Vehicles

Organizer: Jin Wang

For better fuel economy and carbon oxide reduction, future aircrafts calls for electric propulsion. Though there have been significant developments in electric machines and power electronics in the last few decades, electric propulsion presents significant challenges and opportunities.

At the system level, the high power rating of the electric propulsion calls for higher distribution voltage. Currently, the distribution voltage for more electric aircrafts is limited to 540 V because of partial discharge related issues. In the future, where a single aisle commercial aircraft will require more than 10 Megawatt of propulsion power, the electric power distribution voltage is expected to reach as high as 4 kV, which presents a significant challenge in the system architecture and insulation designs.

At the sub-system level, to realize high fuel economy, electric machines and power electronics drives are expected to have ultra-high power densities of 14 kW/kg and 25 kW/kg, respectively, which requires significant innovations in material, device, machine structure, power electronic packaging, control and thermal management.

For future space explorations, there are also significant challenges on power conversion systems in terms of weight and volume power density, device radiation hardness, light weigh insulation material, harsh operation environment, power distribution and protection, etc. Some of the challenges are similar to the ones faced by aero vehicles and solutions can possibly apply to both type of applications.

This proposed special session has invited speakers from NASA, US Air Force, industry and academia to present challenges and solutions for electric propulsion for future aero and space vehicles.

Speakers and Presentations:

Space Power Technology Challenges and Needs to Support Lunar/Mars Campaign

Raymond F. Beach Principal Technologist for Power & Energy Storage, NASA Glenn Research Center

How Do We Make Electrified Aircraft Propulsion Systems Safe to Fly?

Thomas M. Jahns Professor, University of Wisconsin

Considerations for Failure Prevention in Aerospace Electrical Power Systems Utilizing Higher Voltages

Daniel L. Schweickart Air Force Research Laboratory/Aerospace Systems Directorate

Doubly Fed Brushless Machine for High Speed Variable Systems

Longya Xu Professor, The Ohio State University

Electric Aircraft Propulsion System – Scaling-up to Meet Future Aircraft Roadmaps

Pat Wheeler Professor, University of Nottingham

Challenges and Opportunities for Electric Drive Train in Electrified Aircraft Propulsion Systems

Xin Wu Principal Scientist at UTRC

State-of-the-art and Emerging Electric Drive Architectures for More-Electric-Aircraft Propulsion

Julia Zhang Assistant Professor, The Ohio State University

20 MW Electrified Aircraft

Dr. Parag Kshirsagar Associate Director, Collins Aerospace Program Office, Raytheon Technologies Research Center

2020 IEEE ENERGY CONVERSION CONGRESS & EXPOSITION®

SS-16 | Industry vs Academia: which career path is right for you? Withdrawn by organizers

Thursday, October 15

9:00AM-10:40AM

SS-17 | Dealing with Public Health Emergence: Online Life and Advanced Technologies in Remote Education

Organizers: *Women in Engineering (WiE),* Norma Anglani, Hong Li, Giovanna Oriti, Katherine A. Kim, Jin Ye, Jingya Dai, Mi Dong, Shu Yang, Na Zhi

Remote education has become an important part of schools and universities all over the world during the outbreak of the coronavirus. Advanced technologies, such as advanced meeting software and online education, are playing an important part in the remote education. In this workshop, various engineers and educators will share their approach, tools and advanced software they use, and lessons learned in successfully implementing remote education for people around the world.

Speakers and Presentations:

How to frame and offer a class of energy planning to electrical engineering Master students online

Noma Anglani University of Pavia, litaly

Developing online educational videos to reach a global audience

Katherine Kim National Taiwan University, Taiwan

Distance learning virtual and hardware laboratories

Giowanna Oriti Naval Postgraduate School, Monterey, CA

Some thoughts on online-teaching and webinar

Hong Li Bejing Jiaotong University, China

SS-18 | Power electronics application in standalone wind/ solar based distributed generation system

Organizers: Ashutosh K Giri, Sabha Raj Arya, Rakesh Maurya, Yangheng Yang

The aim of proposed special session is to bring together researchers/academia and practicing engineers in power electronics industry for sharing their innovative ideas for fostering the new research and development in this area. The importance of renewable energy based distributed power generation system have increased manifold in recent years. The power quality (PQ) issues in distributed power generation system are a major concern for customers. The role of power electronics based custom power devices such as voltage source converter is to mitigate the PQ issues and make the system more reliable and practically feasible. The operation of voltage source converter is dependent on the control algorithm used for estimating the modulating signal followed by Pulse width modulation techniques that is used for gate pulses generation. Therefore, this create awareness among teachers, research students and industry persons about better utilization of distributed power generation system by making it more efficient with the use of power electronics. This is intended to cover all the traditional as well as advanced control algorithms of power filtering and their control including modeling and simulations. The application of various converter topologies in solar and wind power generation is the thrust area of this session. The adaptive control, model predictive control, fuzzy based controllers, artificial intelligence based control algorithm and optimization techniques application for estimating the error regulator gains are the focus area for estimating the reference current. The authors can submit their research articles mentioned above, however there is no restriction for some innovative applications used in the domain of wind or solar based distributed power generation system.

Speakers and Presentations:

Design and Control of Solar Photovoltaic Energy System

Bhim Singh CEA Chair Professor and Professor, Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi - 110016-India

Hybrid Renewable Energy Standalone Systems

Ambrish Chandra Professor, Department of Electrical and Computer Engineering, École de Technologie Supérieure, Montreal, QC, Canada

High Energy Efficiency AC Machines and Their Application in Wind Energy Conversion System

Dr. Sanjeet Kumar Dwivedi Senior R&D engineer, Danfoss Drives A/S, Gra°sten, Denmark

Integration of Renewable Energy System to the Power Grid – Impact and Challenges

Dr. Parag Upadhyay, PhD Principal Scientist – Transformers & Electromagnetics, ABB Power Grid Research, Raleigh, NC – 27606, USA

SS-19 | HVdc/MVdc/MTdc technologies and benefits to grid

Organizers: Suman Debnath, Maryam Saeedifard

During this session, the audience will be provided an overview of updates in ongoing research activities in HVdc/ MVdc/MTdc systems and highlight the challenges in greater acceptance of such technologies. The talks will broadly be categorized into modeling, control, opportunities and challenges, and protection of dc systems. The following topics will be discussed: (i) Means to model and simulate converters as well as hybrid grids, (ii) Technical and reliability benefits that can be provided by HVdc/MTdc systems through advanced control methods, (iii) Manufacturer's perspective on HVdc and MVdc technologies, and (iv) Breakers, algorithms, and advances needed to protect hybrid ac-dc grids.

Speakers and Presentations:

High-fidelity modeling, simulation algorithms, and advanced control systems in HVdc converters and systems that enable improved reliability of grids

Suman Debnath (ORNL) CEA Chair Professor and Professor, Department of Electrical Engineering, Indian Institute of Technology Delhi, New

Frequency response and congestion management benefits and modeling challenges for HVdc macrogrids in continental North American electric system

Marcelo Elizondo PNNL

Recent developments and future trends of HVDC & MVDC technologies. A manufacturer's view

Orestes Macchione Siemens

Inline medium voltage direct current circuit breaker

David Smith *General Electric*

Protection of Multi-Terminal High-Voltage DC Grids

Maryam Saeedifard Georgia Institute of Technology

SS-20 | Energy Access: Technologies, Impact and The Opportunity for PELS

Organizers: PELS Technical Committee - 12: Energy Access, Deepak Divan, Jelena Popović

Ensuring universal, affordable and sustainable energy access is one of the biggest societal challenges of our time. As of 2020, close to a billion people worldwide live without electricity, and another two billion have unreliable access. The centralized electricity grid is not the optimal choice for remote and rural applications, due to environmental impact, cost, mismatch to user needs and challenges around financial feasibility. Decentralized approaches, such as solar home systems and microgrids, have emerged as a response to shortcomings of the centralized grid approach, but affordability, scalability, interoperability and societal and technical sustainability remain a challenge.

Power electronics is one of the key enabling technologies for context-appropriate and sustainable energy access solutions. The IEEE Power Electronics Society (PELS) engaged with Energy Access through organizing a global challenge - Empower a Billion Lives (EBL), and by including Energy Access as a new and core topic in its long-range planning. Following on the success of the first EBL round, a strong expression of interest in the technologies underlying energy access, and a burgeoning need for decentralized power systems with more autonomous control, Technical Committee – 12: Energy Access is being formed by PELS to provide global technical leadership in this important area.

The panel discussion is centred around a discussion of the key technology gaps in the broader field of energy access, identifying possible solutions that could have great impact in the communities that need them. This discussion can help guide TC-12 in defining areas of activity, and can further put a spotlight on Empower a Billion Lives as a PELS flagship initiative. The panellists will give positioning statements, followed by a moderated discussion on the following topics:

- » Technical challenges and opportunities in decentralized systems for energy access and necessity of contextappropriate, impact-driven approach.
- » Possible technology topics: DC nanogrids, hyper-efficient appliances, self-organizing microgrids, solar home systems, productive energy use appliances, transactive energy for microgrids, bottom-up clustered microgrids, autonomous inverters, improving battery life, simple easy to use and easy to scale systems.
- » Technology gaps based on field experience, major concerns for field practitioners
- » TC-12 roles and activities:
- » Events, publications, technical leadership in the broader community.
- » Empower a Billion Lives: reflecting on the first round of EBL, lessons learned and looking forward to the second round.
- » Collaboration with relevant IEEE initiatives (e.g. IEEE Smart Village) and groups as well as outside stakeholders (industry, organizations, foundations, governments etc).

The discussions of this panel are expected to raise enthusiasm for this important topic within the PELS community, stimulate involvement in TC-12 activities and energy access as a topic on the whole. The discussions will also be used as inputs for TC-12 activities including the second round of EBL.

Speakers and Presentations:

Off-grid solar opportunities and challenges

Nana Nuamoah Asamoah-Manu Lighting Africa IFC, Kenya

Social impact, Localization and scaling, Open-source design

Chetan Singh Solanki SoULS initative IIT Bombay, India

Nanogrids, Challenges of serving base-of-pyramid Richard Mori *MeshPower, Rwanda*

Special Sessions

Interconnected solar home systems, peer-to-peer energy sharing Felix Boldt *Solar Worx, Germany*

IEEE Smart Village, Capacity building

Rajan Kapur IEEE Smart Village/IIT Mandi, USA/India

Empower a Billion Lives, PELS TC-12 Energy Access, Technology innovation

Deepak Divan Georgia Institute of Technology, USA (moderator)

PELS TC-12 Energy Access, Impact and context-appropriate technology within TC-12

Jelena Popovic University of Twente, The Netherlands (moderator)

Tutorials

Pre-registration for each tutorial is required. The following Tutorials are all video on demand. See live "meet the author" times in the Live/Simu-Live Session Schedules.

Sunday, October 11

T1 | Modelling and Control of Automotive Grade Interior Permanent Magnet Synchronous Motor

Instructors: Seung-Ki Sul and Young-Cheol Kwon

Since Interior Permanent Magnet Synchronous Motor (IPMSM) has been used as a traction motor for hybrid and electric vehicle, the control and modelling of IPMSM have been continuously evolved. Most of modelling and control of IPMSM have been developed based on the ideal model of IPMSM, where the parameters of IPMSM are constant regardless of the operating conditions. In this tutorial, the modelling of automotive grade IPMSM considering magnetic saturation, cross coupling and spatial harmonics will be discussed. As an example, the characteristics of traction motors used in Prius and Bolt will be addressed.

T2 | Challenges and Solutions of Smart Solid State Transformer

Instructors: Marco Liserre, Alex Q. Huang, Rongwu Zhu, and Levy Costa

The smart transformer based on solid state transformer technology provides dc connectivity and power flow controllability increasing the hosting capacity of renewables and electric vehicle charging stations, and consequently reducing the need for updating the grid assets. In this context, this tutorial introduces the recent advancements in the field of smart transformer in terms of power semiconductor technology (e.g. 10 kV SiC), magnetic components (medium voltage, medium frequency and multi-winding), power converter topologies and architectures, connecting them to the services in power system when operating in radial, meshed and hybrid grids, with examples from pilot projects.

T3 | GaN-Based Power Converter Ecosystem Design: Magnetics, Gate Driver IC, and Applications

Instructors: Yaow-Ming Chen, Yu-Chen Liu, Ching-Jan Chen, and Katherine Kim

The power density and efficiency demand of power converters keep increasing in applications such as data centers, vehicles, satellite, and renewable energy system. As demonstrated by industry and academy, GaN switch becomes a game changing device to meet such demands. However, to fully use the potential of GaN-based power converter, an ecosystem including magnetics, gate driver IC, and converter implementation have to be designed together. This tutorial will cover high-frequency converter design and magnetics in the first part, high-speed gate driving design in the second part, and converter applications using GaN switches in the third part. The presentation will introduce each of these main concepts and give concrete examples and experimental results.

T4 | Physics-based Modeling and Control of PWM Converters

Instructors: Christoph Henrik van der Broeck, Marc Stephane Petit, and Rik W. De Doncker

This tutorial presents control design of PWM converters in a physically insightful way enabling the audience to develop creative solutions for their own applications. The tutorial reviews fundamental principles for modeling, design, implementation and analysis of controls for power converters by focusing on the physics of controlled power electronic converters. The tutorial examines these principles using a half-bridge converter as an example, such that a straightforward adaption to other converter topologies is possible. It uses a wide range of MATLAB, Simulink, and PLECS computation and simulation examples that are made available to the audience for in-depth personal study.

T5 | Grid-forming Inverters, Virtual Synchronous Machines, and Power Electronics-enabled Autonomous Power Systems

Instructors: Qing-Chang Zhong

Power systems are going through a paradigm change. Future power systems will be power-electronics-based. These power electronic converters can be controlled as grid-forming inverters, more specifically, as virtual synchronous machines. This leads to synchronized and democratized (SYNDEM) smart grids. This tutorial will cover the underlying principles of the SYNDEM grid architecture, associated control problems, virtual synchronous machines technologies, field demonstration results, and future research directions. Moreover, the SYNDEM Smart Grid Research and Educational Kit, which is an open-source reconfigurable power electronic converter with the capability of directly downloading codes from Matlab/Simulink, will be presented as well.

T6 | Preparing for the Opportunities and Challenges of WBG-Based Motor Drives

Instructors: T.M. Jahns, B. Sarlioglu, UW-Madison; and J.W. Kolar, ETH-Zurich

Wide-bandgap (WBG) power devices are poised to have a major impact on future machine drives. The objective of this tutorial is to assistdrive design engineers to prepare for this transition. The impact of introducing WBG switches into hard-switched voltage-source inverters (VSI) will highlight the challenges associated with drop-in replacement strategies. Advanced inverter bridge-leg topologies that are well-suited to WBG switches will be presented, as well as opportunities for the re-emergence of current-source inverters (CSIs). The tutorial will address practical challenges associated with designing WBG-based inverters and conclude with a discussion of current and future applications of WBG-based motor drives.

Sunday, October 11

T7 | Design Considerations for Large Format Lithium-ion Battery Systems

Instructors: Ashish Arora and Sneha Lele

This tutorial will provide an overview of the requirements and challenges of designing large format Li-ion battery systems such as those used in electric vehicles, grid storage applications etc. Functional safety concepts commonly used when designing these battery systems will be introduced and the hazards associated with large format battery systems will be explained using case studies. The tutorial will also provide an overview of applicable industry standards, examples of common large format battery system architectures and their advantages and disadvantages and the typical failure modes of protection schemes commonly used for large format battery systems.

T8 | Application of Topology Optimization Techniques in Innovative Motor Design

Instructors: Sainan Xue and Vedanadam Acharya

The tutorial reviews the technical challenges in machine design where the high torque density and efficiency are required across the entire drive range, introduces two major topology optimization techniques – genetic algorithm with on/off method and the normalized Gaussian Network (NGnet) as well as density method for local optimization, then elaborates on how machine design can utilize these topology optimization techniques in narrowing down the best innovative topologies under the predefined operating conditions. The effectiveness, calculation complexity, and hardware requirements for each optimization technique are presented with case studies. Finally, we propose future application scenarios where topology optimization made possible.

T9 | High-Efficient, High-Reliable Energy Storage Power Conversion Systems (PCS) for Increased Renewable Energy and Electric Vehicle Integration

Instructors: Johan Enslin and Zheyu Zhang

The increased use of variable and intermittent renewable generation, as well as integration of more rapid EV charging infrastructure, with increased requirements for reliability and resiliency power grid, makes the case for more energy storage capacity on distribution feeders. Through practical case studies and installed systems, this tutorial will present energy storage technologies, value proposition, regulatory environment and interconnection standards. Also, energy storage power conversion systems technologies will be overviewed with the development of high-efficiency SiC-based energy storage converter emphasized. This is an intermediate-level tutorial for researchers and engineers with fundamental power electronics knowledge.

T10 | Electrical Insulation Stresses in PWM-driven Electric Machines

Instructors: Julia Zhang, Yanyan Xie, Franco Leonardi, Alfredo Munoz and Feng Liang

This tutorial will teach the finite element modeling, mathematical modeling, and experimental testing of electrical stress distribution inside electric machine windings driven by PWM voltage excitations. The instructors will discuss: 1) industry standards on winding insulation design and testing for electric machines; 2) how to use finite element techniques to model the winding pulse voltage propagation and current distribution in individual conductors of inverter-driven machine windings; 3) mathematical modeling of voltage/current distribution in machine windings; 4) challenges and solutions in testing winding electrical stress distribution using both machine prototypes and electrified vehicle productions; 5) factors that affect the winding pulse voltage propagation, including wire distributions in slots, parasitic parameters, current level, DC bus voltage, rotor speed, etc. 6) the voltage stress map on the insulation parts along machine windings, providing support for machine insulation system design.

T11 | Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles

Instructors: John Hayes and Abas Goodarzi

In this introductory tutorial, the authors present a three-part seminar based on their 2018 book Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, an industry reference and a structured holistic textbook for the teaching of the fundamental theories and applications. The first half of the tutorial is a lively overview of battery, fuel cell, and hybrid electric vehicles with their strong Detroit roots. The second part of the tutorial reviews the traction machines. The third part of the tutorial reviews the power electronics, and discusses the propulsion, charging, accessory, and auxiliary power converters.

T12 | Design and Integration of Photovoltaic and Energy Storage Converters

Instructors: Martin Ordonez, Emanuel Serban and Francisco Paz

Renewable energy systems, especially solar photovoltaic (PV), are growing at an unprecedented pace and pairing them with energy storage systems (ESS) is crucial. Successful system integration depends on the careful balance between cost and functionality. This seminar covers the design and integration of PV with ESS to extend system features beyond the limits of the current technology. Three aspects of PV+ESS are covered: 1) Design and Optimization of Power Converters for PV, 2) PV+ESS Integration, and 3) PV+ESS System Design Through Optimization. Industry-standard practices and an introduction of advanced techniques that yield better performance and extend functionality are discussed.

T13 | Analysis, Simulation, and Implementation of Vector Control: An Extremely Low-Cost Laboratory

Instructors: Ned Mohan and Siddharth Raju

This tutorial will describe closed-loop position/speed/torque control of ac drives using vector control. One of the major bottlenecks in the implementation and testing of new motor controls is the cost of software and hardware necessary to evaluate these controls. This tutorial relies solely on the ONR-funded simulation and model-based real-time code generation and control software, Sciamble[®] Workbench (https://sciamble.com/), available free-of-cost. The real-time implementation will be demonstrated using an inexpensive low-voltage lab kit developed by the University of Minnesota through ONR funds(https://cusp.umn.edu/). All participants will be able to remotely implement vector control of AC drives.

T14 | Health-conscious Fast Charging Strategies and Battery Management Systems for Electrified Autonomous Transportation

Instructor: Sheldon Williamson

Enhancing the calendar life and safety of Lithium-ion battery packs has been the topic of much interest when it comes to transportation electrification. In this framework, the role of on-board active cell voltage balancing of Li-ion batteries will be highlighted in this talk. This is a very important topic in the context of battery energy storage cost and life/ state-of-charge, SOC/state-of-health, SOH monitoring. This talk will also introduce a first-of-its-kind closed-loop cell charge (voltage) balancing and extreme fast charging technique. The technique uses instantaneous cell voltage and/or temperature rise (Δ T) as a control parameter.

Technical Program Schedule

ORAL SESSIONS

The following Oral Sessions are all video on demand. See live "meet the author" times in the Live/Simu-Live Session Schedules.

Monday, October 12

11:00AM-11:30AM

S1 | Machines for Transportation

Chairs: Alireza Fatemi, Rajesh Deodhar

0597 | Basic Study on Efficiency Improvement of Hybrid Excitation Flux Switching Motor using Variably Magnetizable Permanent Magnet for Automotive Traction Drives

Keita Otsuka, Takeshi Okada, Tomoya Mifune, Hiroaki Matsumori, Takashi Kosaka, Nobuyuki Matsui Nagoya Institute of Technology, Japan

1225 | A 3D-Airgap Slotless Permanent Magnet Machine for Transportation Applications

Md Sariful Islam¹, Rajib Mikail², Ritvik Chattopadhyay¹, Iqbal Husain¹ ¹North Carolina State University, United States; ²ABB US Corporate Research Center, United States

0024 Air-Cooled Multi Phase Dual-Winding In-Wheel Motor integrated with Ultra Small SiC Module

Kan Akatsu¹, Satoshi Tanimoto², Yoshinori Murakami³ ¹Yokohama National University, Japan; ²Fukushima SiC Applied Engineering Inc., Japan; ³Nissan Motor Co., Ltd, Japan

0273 | Novel Efficiency-Shifting Radial-Axial Hybrid Interior Permanent Magnet Synchronous Motor for Electric Vehicle

Hoyun Won, Yang-Ki Hong, Minyeong Choi, Hwan-Sik Yoon, Shuhui Li, Tim Haskew *The University of Alabama, United States*

0390 | Investigation of Enhancing Reluctance Torque of a Delta-Type Variable Flux Memory Motor having Large Flux Barrier for EV/HEV Traction

Ren Tsunata, Masatsugu Takemoto, Satoshi Ogasawara, Koji Orikawa{} Hokkaido University, Japan

0759 | A High-Speed High-Power-Density Non-Heavy Rare-Earth Permanent Magnet Traction Motor

Tsarafidy Raminosoa¹, Randy Wiles¹, J. Emily Cousineau², Kevin Bennion², Jon Wilkins¹ ¹Oak Ridge National Laboratory, United States; ²National Renewable Energy Laboratory, United States

0388 | Motor System Integrated Magnetic Multiple Spur Gear and High Speed Motors for Electric Vehicle

Kohei Aiso¹, Kan Akatsu², Yasuaki Aoyama³ ¹Waseda University, Japan; ²Yokohama National University, Japan; ³Hitachi, Ltd., Japan

Virtual 2

Monday, October 12

11:00AM-11:30AM

S2 | Power Converter Controls in Wind and PV Systems

Chairs: Eduard Muljadi, Fei Gao

1324 Modulated Predictive Current Control of NPC Converter-Based PMSG Wind Energy System

Venkata Yaramasu¹, Kristiyan Milev¹, Apparao Dekka², Jose Rodriguez³ ¹Northern Arizona University, United States; ²Lakehead University, Canada; ³Universidad Andres Bello, Chile

0137 | Anti-Disturbance Full-Order Sliding Mode Control of PMSG-Based

Wind Energy Conversion Systems

Chun Wei¹, Jianxing Xu¹, Qiang Chen¹, Wei Qiao², Jianwu Zeng³ ¹Zhejiang University of Technology, China; ²University of Nebraska-Lincoln, United States; ³Minnesota State University-Mankato, United States

1571 | Impact of Virtual Synchronous Generator (VSG) on Sub Synchronous Control Interaction (SSCI) in DFIG Systems using Sequence Domain Impedance Method

Mohammad Khatibi, Yu-Fang Jin, Sara Ahmed University of Texas at San Antonio, United States

1389 | LVRT Control based on Partial State-Feedback Linearization for SCIG Wind Turbine Systems

Anh Tan Nguyen, Dong-Choon Lee Yeungnam University, Korea

1463 | Power Optimizer based on Model Predictive Control for a Cascade Multilevel Impedance Source Inverter

Sally Sajadian Lafayette College, United States

0094 | Circulating Current Analysis and Power Mismatch Elimination Strategy for an MMC-Based Photovoltaic System

Xicai Pan, Shangzhi Pan, Jinwu Gong, Xiaoming Zha Wuhan University, China

1419 Comparative Analysis of Flexible Power Point Tracking Algorithms in Photovoltaic Systems

Hossein Dehghani Tafti¹, Georgios Konstantinou¹, Christopher D. Townsend², Glen G. Farivar³, Salvador Ceballos⁴, John E. Fletcher¹, Josep Pou⁴

¹University of New Wales, Australia; ²The University of Western Australia, Australia; ³Nanyang Technological University, Singapore; ⁴Basque Research and Technology Alliance, Spain

0593 | Energy Harvesting Comparison and Analysis in 1000V and 1500V Grid-Connected PV Systems

Branislav Stevanović¹, Emanuel Serban², Miroslav Vasić¹, Martin Ordonez², Santiago Cóbreces³ ¹Universidad Politécnica de Madrid, Spain; ²The University of British Columbia, Canada; ³Universidad de Alcalá, Spain

Virtual 3

Monday, October 12

11:00AM-11:30AM

S3 | DC-DC Converters – Switched Capacitors and Datacenter Applications

Chairs: Wenkang Huang, Gui-Jia Su

1570 Upscaling Supercapacitor assisted Low Dropout Regulator for High-Current and High-Voltage for the 48 V DC Google Rack Architecture

Thilanga Ariyarathna¹, Nihal Kularatna², D. Alistair Steyn-Rosse² ¹Waikato Institute of Technology, New Zealand; ²The University of Waikato, New Zealand

1095 An Integrated Programmable Gate Timing Control and Gate Driver Chip for a 48V-to-0.75V Active-Clamp Forward Converter Power Block

Dongkwun Kim^{1,2}, Yoshitaka Yamauchi¹, Xiaodong Meng¹, Tianyu Jia¹, Liam McAuliffe¹, Kevin Tien¹, Shurong Tian¹, Yuan Yao¹, Andrew Ferencz¹, Mingoo Seok², Xin Zhang¹, Todd Takken¹ *IBM T. J. Watson Research Center, United States;* ²Columbia University, United States

1403 | Series Voltage Compensator for Differential Power Processing

Ping Wang, Minjie Chen Princeton University, United States

1086 A 12 Switch Zero-Inductor Voltage Converter Topology For Next Generation Datacenters

Samuel Webb, Yan-Fei Liu *Queen's University, Canada*

0551 | Merged-Two-Stage Resonant and PWM Soft-Charging of Hybrid-Switched-Capacitor DC-DC Converters

Yenan Chen, Jaeil Baek, Minjie Chen *Princeton University, United States*

0380 | Reducing C_{oss} Switching Loss in a GaN-Based Resonant Cockcroft-Walton Converter using Resonant Charge Redistribution

Nathan Miles Ellis, Rajeevan Amirtharajah University of California-Davis, United States

1238 | Switched Capacitor Converter with Flexible Voltage Gain and 99.2% Efficiency Utilizing Autotransformer

Fnu Satvik, Wensong Yu, Dakai Wang, Siyuan Chen North Carolina State University, United States

0684 A Novel Hybrid 4:1 Step Down Converter using an Autotransformer with DC Winding Current

Cheng Li, Diego Serrano, José A. Cobos Universidad Politécnica de Madrid, Spain

Monday, October 12

11:00AM-11:30AM

S4 | Wide-Bandgap Semiconductors 1

Chairs: Cong Li, Christina DiMarino

0816 Comparison of Medium-Voltage Oscilloscope Probes for Evaluating Silicon-Carbide Multi-Chip Power Modules

Christopher D. New, Andrew N. Lemmon, Brian T. DeBoi, Jared C. Helton, Blake W. Nelson *The University of Alabama, United States*

0838 | A Physical Investigation of Large-Signal Dynamic Output Capacitance and Energy Loss in GaN-on-Si Power HEMTs at High-Frequency Applications

Jia Zhuang¹, Grayson Zulauf¹, Jaume Roig², James D. Plummer¹, Juan Rivas-Davila¹ 'Stanford University, United States; ²ON Semiconductors, Belgium

0296 | Characterization and Analysis of Insulated Metal Substrate-Based SiC Power Module for Traction Application

Shajjad Chowdhury, Emre Gurpinar, Burak Ozpineci Oak Ridge National Laboratory, United States

0254 An Intelligent Three-Level Active Gate Driver for Crosstalk Suppression of SiC MOSFET

Zhidong Qiu, Hong Li, Yanfeng Jiang, Tiancong Shao, Zhichang Yang, Zhipeng Zhang, Jiaxin Wang *Beijing Jiaotong University, China*

0538 | A 500kW Forced-Air-Cooled Silicon Carbide (SiC) 3-Phase DC/AC Converter with a Power Density of 1.246MW/m³ and Efficiency >98.5%

Yan Li¹, Yonglei Zhang¹, Xibo Yuan², Lei Zhang¹, Fei Ye¹, Yaohua Li¹, Yipu Xu¹, Zijian Wang¹, Zhe Li¹ ¹China University of Mining and Technology, China;²University of Bristol, United Kingdom

0518 | Characterizing Threshold Voltage Shifts and Recovery in Schottky Gate and Ohmic Gate GaN HEMTs

Jose Ortiz Gonzalez, Burhan Etoz, Olayiwola Alatise University of Warwick, United Kingdom

0963 | Impact of Parasitics and Load Current on the Switching Transient Time and Motor Terminal Overvoltage in SiC-Based Drives

Wenzhi Zhou, Mohamed S. Diab, Xibo Yuan University of Bristol, United Kingdom

0726 | 3D Commutation-Loop Design Methodology for a Silicon-Carbide based 15 kW, 380:480 V Matrix Converter with PCB Aluminum Nitride Cooling Inlay

Victoria Baker¹, Boran Fan¹, Rolando Burgos¹, Vladimir Blasko², Warren Chen² ¹Virginia Polytechnic Institute and State University, United States; ²Raytheon Technologies Research Center, United States

0680 | Performance of Wide-Bandgap Gallium Nitride vs Silicon Carbide Cascode Transistors

Yasin Gunaydin¹, Saeed Jahdi¹, Olayiwola Alatise², Jose Ortiz Gonzalez², Ruizhu Wu², Mohammad Hedayati¹, Xibo Yuan¹, Phil Mellor¹, Bernard Stark¹ ¹University of Bristol, United Kingdom; ²University of Warwick, United Kingdom

Virtual 1

Monday, October 12

11:35AM-12:05PM

S5 | High Speed and Bearingless Machines

Chairs: Eric Severson, Peng Han

1407 Design of an Ultra-High Speed Bearingless Motor for Significant Rated Power

Ashad Farhan, Martin Johnson, Kyle Hanson, Eric L. Severson, *University of Wisconsin-Madison, United States*

0267 | Fully Passively Levitated Self-Bearing Machines with Combined Windings

Joachim Van Verdeghem, Bruno Dehez Université Catholique de Louvain, Belgium

0995 | Investigation of Enhancing Output Power Density in Ultra-High-Speed Motors with Concentrated Winding Structure

Takayuki Iida¹, Masatsugu Takemoto², Satoshi Ogasawara¹, Koji Orikawa¹, Ikuya Sato³, Akio Toba³, Masao Shuto³, Hiroyuki Kokubun³

¹Hokkaido University, Japan; ²Okayama University, Japan; ³Fuji Electric Co., Ltd., Japan

1058 | Towards Electrostatic Levitation of Rotating Machines

Michael Mayberry, Daniel C. Ludois, Eric L. Severson University of Wisconsin-Madison, United States

0637 | Investigation of Combined Electro Magnetic Structure of Bearingless Motor and Magnetic Gear

Akira Kumashiro¹, Akira Chiba¹, Wolfgang Gruber², Wolfgang Amrhein², Gerald Jungmayr³ ¹Tokyo Institute of Technology, Japan; ²Johannes Kepler University Linz, Austria; ³Linz Center of Mechatronics GmbH, Austria

0615 | Magnetically Geared Conveyor Drive Unit – An Updated Version

Simon Staal Nielsen¹, Rasmus Koldborg Holm², Nick Ilsøe Berg, Peter Omand Rasmussen¹, ¹Aalborg University, Denmark; ²Dansk Ingeniørsservice A/S, Denmark

1502 Effects of Axial Flux Magnetic Gear Misalignment

Bryton Praslicka¹, Matthew Johnson², Matthew C. Gardner¹, Ellen Dangtran¹, Hamid A. Toliyat¹ ¹Texas A&M University, United States; ²U.S. Army CCDC, United States

0607 | A Dual Stator/Rotor PM and Winding Flux Modulated PM Machine

Shaofeng Jia, Shuai Feng, Deliang Liang, Jinjun Liu, *Xi 'an Jiaotong University, China*

1509 Comparison of Reluctance and Surface Permanent Magnet Coaxial Magnetic Gears

Shima Hasanpour¹, Matthew C. Gardner¹, Matthew Johnson², Hamid A. Toliyat¹, ¹Texas A&M University, United States; ²U.S. Army CCDC, United States

Virtual 2

Monday, October 12

11:35AM-12:05PM

S6 | Power Converters for Solar Energy

Chairs: Deepak Divan, Kaushik Basu

0886 | Internal Energy Balance of a Modular Multilevel Cascade Converter based on Chopper-Cells with Distributed Energy Resources for Grid-Connected Photovoltaic Systems

Bruno E. de O. B. Luna¹, Cursino B. Jacobina², Alexandre C. Oliveira², ¹Federal University of Semi-Arid Region, Brazil; ²Federal University of Campina Grande, Brazil

0119 | A Fundamental Voltage and Harmonics Elimination Control Strategy for Single-Phase Cascade Off-Grid Photovoltaic-Storage System using Hybrid Modulations

Yiyan Lu¹, Zhao Liu¹, Jianshou Kong², Deping Tang³, Jie Yu¹, Jiawei Ji¹ ¹Nanjing University of Science and Technology, China; ²Changshu Intelligent Laser Equipment Research Institute, China; ³Hefei Kewell Power System Co., Ltd., China

0998 Optimized Predictive Control of Hybrid Multilevel PV Inverter with Reduced Leakage Current

Jayesh Kumar Motwani, Abhinandan Routray, Nimish Kumar Chaudhari, Rajeev Kumar Singh, Ranjit Mahanty Indian Institute of Technology (BHU) Varanasi, India

1143 | Multiport Power Management Method with Partial Power Processing in a MV Solid-State Transformer for PV, Storage, and Fast-Charging EV Integration

Liran Zheng, Rajendra Prasad Kandula, Deepak Divan Georgia Institute of Technology, United States

1587 A Series Interharmonic Filter for Cascaded H-Bridge PV Inverters

Yiwei Pan, Ariya Sangwongwanich, Yongheng Yang, Frede Blaabjerg Aalborg University, Denmark

0218 | A Solution for the Full-Bridge Grid-Tie Inverter using Single Virtual Ground Capacitor with UPWM

Ruihua Shen, Henry Shu-Hung Chung City University of Hong Kong, China

0779 | A Current-Mode Controller for an HB-NPC Inverter using the Virtual-Ground Trajectory for Power Injection in PV Systems

S. Iturriaga-Medina¹, P.R. Martinez-Rodriguez¹, G. Escobar², J.C. Mayo-Maldonado², J.E. Valdez-Resendiz², O.F. Ruiz-Martinez³ ¹Universidad Autonoma de San Luis Potosi, Mexico; ²Tecnologico de Monterrey, Mexico; ³Universidad Panamericana, Mexico

1093 | An 11 kV AC, 16 kV DC, 200 kW Direct-to-Line Inverter Building-Block using Series-Connected 10 kV SiC MOSFETs

Lakshmi Ravi, Xiang Lin, Dong Dong, Rolando Burgos Virginia Polytechnic Institute and State University, United States

Monday, October 12

11:35AM-12:05PM

S7 | Isolated DC-DC Converters

Chairs: Shafiq Ahmed Odhano, Yuan Xibo

0006 | LLC Converters Power Density Enhancement through Optimized Current Shaping using Multi-Resonant Branches

Ali Elrayyah Hamad Bin Khalifa University, Qatar

1138 Current Balancing and Phase Shedding by Split Capacitor for a Three-Phase LLC Resonant Converter

Akiteru Chiba, Yuuki Aoyagi, Kazuto Takagi Sanken Electric Co., Ltd., Japan

1582 Analysis and Control of Three-Phase Interleaved SCC-LLC Resonant Converter Load Sharing Considering Component Tolerance

Bo Sheng, Xiang Zhou, Wenbo Liu, Yang Chen, Yan-Fei Liu, Paresh C. Sen *Queen's University, Canada*

1135 An Interchangeable Soft-Switched Voltage Boosting Circuit for a Multi-Mode LLC Step-Up Converter Module in Medium Voltage Applications

Mehdi Abbasi¹, Reza Emamalipour¹, Muhammad Ali Masood Cheema², John Lam¹ ¹York University, Canada; ²Northern Transformer, Canada

0725 | Dual Voltage Flyback Topology Operation with Efficiency Enhancers at Dual Voltage Mains

Noam Ezra, Teng Long University of Cambridge, United Kingdom

0162 | The Asymmetrical Half-Bridge Flyback Converter: A Reexamination

Giorgio Spiazzi, Simone Buso University of Padova, Italy

0674 | Family of Hybrid DC-DC Converters for Connecting DC Current Bus and DC Voltage Bus

Nie Hou, Yun Wei Li University of Alberta, Canada

1183 | Fault Tolerant Isolated Dual Active DC-DC Converter using WBG Devices

Amin Ashraf Gandomi¹, Leila Parsa¹, Vahid Dargahi², Keith Corzine¹ ¹University of California-Santa Cruz, United States; ²University of Washington-Tacoma, United States

Monday, October 12

11:35AM-12:05PM

S8 | Modern Tools for Detecting and Identifying Electrical System Parameters or Attacks

Chairs: Burak Ozpineci, Osama Mohammed

1567 DC Microgrids under Denial of Service Attacks: Feasibility and Stability Issues

Jianzhe Liu¹, Bai Cui², Bo Chen¹, Xiaonan Lu³, Feng Qiu¹, Sudip Mazumder⁴ ¹Argonne National Laboratory, United States; ²National Renewable Energy Laboratory, United States; ³Temple University, United States; ⁴University of Illinois at Chicago, United States

0734 | Data-Driven Cyberattack Detection for Photovoltaic (PV) Systems through Analyzing Micro-PMU Data

Qi Li¹, Fangyu Li¹, Jinan Zhang¹, Jin Ye¹, Wenzhan Song¹, Alan Mantooth² ¹University of Georgia, United States; ²University of Arkansas, United States

0796 | Composite Load Model Parameter Identification with Distributed Machine Learning for the Stability Study of Microgrids

Javad Khodabakhsh¹, Gerry Moschopoulos¹, Pirathayini Srikantha² ¹Western University, Canada; ²York University, Canada

0891 Detection of False-Data Injection Attacks in Supercapacitor Charging Systems

Bowen Liu, Fu Jiang, Heng Li, Hongtao Liao, Hang Zhang, Jun Peng, Zhiwu Huang, Xianqi Lu *Central South University, China*

0845 | Expanding Exposure Area of Magnetic Field Generator for Biological Evaluation by using Dual Air-Core Inductor

Kazuki Matsubara, Keiji Wada, Yukihisa Suzuki Tokyo Metropolitan University, Japan

1307 | Design Consideration for Power Line Sensors in Power Distribution Systems

Xianyong Feng, Robert Hebner, Shannon Strank The University of Texas at Austin, United States

0352 Design and Implementation of Remote Plasma Sources for Semiconductor Chamber Cleaning

T.F. Wu, L.C. Yu, A. Kumari, R.Z. Hung, P.J. Chen National Tsing-Hua University, Taiwan

0155 | A Design Methodology of a Free Positioning None-Overlapping Wireless Charging System for Consumer Electronics with a Limited Parameter Variation

Yiming Zhang, Shuxin Chen, Xin Li, Li Zhang, Yi Tang Nanyang Technological University, Singapore

Monday, October 12

12:10PM-12:40PM

S9 | Optimization in Electric Machines

Chairs: Rukmi Dutta, Giulio De Donato

1076 | Multiphysics Optimisation of a Slotless Permanent Magnet Machine with a Composite Winding Layer

Suzanne Collins, Philip H. Mellor, Nick Simpson University of Bristol, United Kingdom

1250 Co-Optimization of an Electric Motor-Drivetrain System for Concentrated Solar Power Heliostats

Abdulaziz M. Qwbaiban, Shen Zhang, Thomas G. Habetler Georgia Institute of Technology, United States

0217 | Rotor Surface Optimization of Interior Permanent Magnet Synchronous Motors to Reduce both Rotor Core Loss and Torque Ripples

Katsumi Yamazaki¹, Kento Utsunomiya¹, Akihiro Tanaka², Toru Nakada² ¹Chiba Institute of Technology, Japan; ²Nissan Motor Co. Ltd., Japan

0263 | Multi-Objective Whale Optimization Algorithm and Optimal Area Product Model based Design of Litz-Wire Gapped High-Frequency Transformer for LLC Resonant Converters

Daniyal Ahmed, Li Wang, Zehua Dai Nanjing University of Aeronautics and Astronautics, China

1440 | Electromagnetic and Thermal Analysis of a Line-Start Permanent-Magnet Synchronous Motor

Mousalreza Faramarzi Palangar¹, Amin Mahmoudi¹, Solmaz Kahourzade², Wen L. Soong³ ¹Flinders University, Australia; ²University of South Austria, Australia; ³University of Adelaide, Australia

1515 Design and Magnetic Field Analysis of a Dual Rotor Axial Flux PM Machine with Steel-Assisted Halbach Magnet Configuration

Sodiq Agoro, Iqbal Husain North Carolina State University, United States

0234 | Prediction of Transient Voltage Distribution in Inverter-Fed Stator Winding, Considering Mutual Couplings in Time Domain

Shubham Sundeep, Jiabin Wang, Antonio Griffo The University of Sheffield, United Kingdom

0513 | Frequency-Domain based Windings Voltage Distribution Modelling for Converter-Fed Electrical Machines

Yi Wei¹, Antonio Griffo¹, Fernando Alvarez-Gonzalez¹, Ravindra Bhide², Subhra Samanta², Arwyn Thomas², Zi-Qiang Zhu¹, Richard Clark²

¹University of Sheffield, United Kingdom; ²Siemens Gamesa Renewable Energy Limited, United Kingdom

0464 | Two-Axis Vector Control of Double Stator Linear and Rotary Permanent Magnet Machine Considering Orthogonally Coupling Effect

Lei Xu, Xiaoyong Zhu, Li Zhang, Chao Zhang, Deyang Fan Jiangsu University, China

1531 | Design and Analysis of a Hook Shaped Stator Core with Ring Winding Transverse Flux Machine for Wind Turbine Applications

Anik Chowdhury, Yilmaz Sozer The University of Akron, United States

Virtual 2

Monday, October 12

12:10PM-12:40PM

S10 | Optimization and Sizing of Energy Storage Systems

Chairs: Yilmaz Sozer, Xiaofeng Yang

0860 | Robustness Evaluation of PV-Battery Sizing Principle under Mission Profile Variations

Monika Sandelic, Ariya Sangwongwanich, Frede Blaabjerg Aalborg University, Denmark

1356 Distributed ESS Capacity Decision for Home Appliances in Smart Home

Yeon ju Baik¹, Ye gu Kang² ¹University of Wisconsin-Madison, United States; ²University of Oviedo, Spain

1553 | Cost Optimization of Battery and Supercapacitor Hybrid Energy Storage System for Dispatching Solar PV Power

Pranoy Kumar Singha Roy, JiangBiao He, Yuan Liao University of Kentucky, United States

0896 | An Online Extremum Seeking Optimization Strategy for Warm-Up of Lithium Batteries

Kaifu Guan, Zhiwu Huang, Yongjie Liu, Hongtao Liao, Zhiwei Gao, Yinhui Le, Xiaoyong Zhang, Jun Peng, Yue Wu *Central South University, China*

0945 | Reactive Balancing Circuit for Paralleled Battery Modules Employing Dynamic Capacitance Modulation

Phuong-Ha La, Sung-Jin Choi University of Ulsan, Korea

0766 | Power Management of Supercapacitors using Auxiliary Bank Switching for Hybrid Energy Storage Systems

Yashwanth Dasari, Deepak Ronanki, Sheldon S. Williamson University of Ontario Institute of Technology, Canada

0914 Cooperative Cell Balancing of Supercapacitors with Adaptive Observers

Minghui Guo, Xiaoyong Zhang, Heng Li, Hongtao Liao, Yexin Liao, Hang Zhang, Zhiwu Huang, Zhiqiang Meng *Central South University, China*

0186 | Analysis of the Inter-Submodule Active Power Disparity Limits in Modular Multilevel Converter-Based Battery Energy Storage Systems

Gaowen Liang¹, Hossein Dehghan Tafti², Glen G. Farivar¹, Josep Pou¹, Christopher D. Townsend³, Georgios Konstantinou² ¹Nanyang Technological University, Singapore; ²University of New South Wales, Australia; ³University of Western Australia, Australia

Virtual 3

Monday, October 12

12:10PM-12:40PM

S11 | DC-DC Converters for Electric Transportation

Chairs: Li Zhang, Manuel Arias

1173 Variable-Frequency Controlled Interleaved Boost Converter

Shamar Christian, Roberto Armin Fantino, Roderick Amir Gomez, Yue Zhao, Juan Carlos Balda University of Arkansas, United States

0727 | A Composite DC-DC Converter using Current-Fed Dual-Half Bridge

Nan Lin, Zhe Zhao, Fei Diao, Yue Zhao, Juan Carlos Balda University of Arkansas, United States

0326 | A Bidirectional Non-Isolated DC-DC Converter based on Switched-Capacitor Converters for DC Electric Railways

Kazuaki Tesaki, Makoto Hagiwara Tokyo Institute of Technology, Japan

1335 | Split Duty Cycle Coupled Multi-Phase Boost-Buck Converter

Ahmed K. Khamis¹, Mohammed Agamy¹, Ramanujam Ramabhadran² ¹University at Albany, SUNY, United States; ²GE Aviation, United States

0486 Auxiliary Power Module – Integrated EV Charger with Extended ZVS Range

Gibum Yu, Sewan Choi Seoul National University of Science and Technology, Korea

0337 | Isolated DC/DC Multimode Converter with Energy Storage Integration for Charging Stations

Felix Hoffmann, Thiago Pereira, Marco Liserre Christian-Albrechts-Universität zu Kiel, Germany

1159 | High Efficiency Bidirectional DC-DC Converter with Matrix Transformer for Heavy Duty Hybrid Electric Vehicles

Shubham Mungekar, Akash Dey, Ghansyamsinh Gohil The University of Texas at Dallas, United States

0073 | Experimental Characterization of a 750-V 100-kW 16-kHz Bidirectional Isolated DC-DC Converter with a Unity-Turns-Ratio Transformer at Different Voltage Ratios

Ryo Haneda, Hirofumi Akagi Tokyo Institute of Technology, Japan

0479 | Zero-Voltage-Switching Current-Source Rectifier based EV Charging System using SiC Devices

Yang Xu¹, Zheng Wang¹, Pengcheng Liu¹, Yihan Chen¹, Jiangbiao He² 'Southeast University, China;²University of Kentucky, United States

Virtual 4

Monday, October 12

12:10PM-12:40PM

S12 | Wide-Bandgap Semiconductors 2

Chairs: Xiu Yao, He Li

1445 | Mitigation of Motor Overvoltage in SiC-Device-Based Drives using a Soft-Switching Inverter

Wenzhi Zhou, Mohamed S. Diab, Xibo Yuan University of Bristol, United Kingdom

0519 Online Health Monitoring and Aging Prognostics for SiC Power Converters

Eddy Aeloiza¹, Arun Kadavelugu¹, Liming Liu¹, Joonas Puukko² ¹ABB Inc., United States; ²ABB Oy, Finland

1369 | Hard-Switched Overvoltage Robustness of p-Gate GaN HEMTs at Increasing Temperatures

Joseph P. Kozak, Ruizhe Zhang, Jingcun Liu, Qihao Song, Ming Xiao, Yuhao Zhang Virginia Polytechnic Institute and State University, United States

0399 | Influence of Paralleled SiC MOSFET on Turn-Off Gate Voltage Oscillation

Ye Zhu¹, Han Li¹, Cheng Luo², Yong Liu¹, Cheng Wan¹, Jie Ma¹ ¹Eaton Corp., China; ²Eaton Corp., United States

0730 | Trade-Offs between Gate Oxide Protection and Performance in SiC MOSFETs

Jose Ortiz Gonzalez, Ruizhu Wu, Olayiwola Alatise University of Warwick, United Kingdom

0883 | Turn on Switching Transient Analysis of SiC MOSFET and Schottky Diode Pair

Shamibrota Kishore Roy, Kaushik Basu Indian Institute of Science-Bangalore, India

0960 | Switching Current Imbalance Mitigation for Paralleled SiC MOSFETs using Common-Mode Choke in Gate Loop

Jiye Liu, Zedong Zheng Tsinghua University, China

1574 | Current Sharing Analysis of SiC Power Modules in Parallel Operation

Yue Zhang, Zhining Zhang, Boxue Hu, Faisal Alsaif, Khalid Alkhalid, Jin Wang, Xiao Li The Ohio State University, United States

1140 | A 1200V/650V/160A SiC+Si IGBT 3-Level T-Type NPC Power Module with Optimized Loop Inductance

Asif Imran Emon, Zhao Yuan, Amol Deshpande, Hongwu Peng, Riya Paul, Fang Luo *University of Arkansas, United States*

Wednesday, October 14

9:00AM-9:30AM

S13 | Additive and Alternative Manufacturing for Electric Machines

Chairs: Nick Simpson, Nicola Bianchi

0700 | Novel Multi-Layer Design and Additive Manufacturing Fabrication of a High Power Density and Efficiency Interior PM Motor

Maged Ibrahim, Fabrice Bernier, Jean-Michel Lamarre National Research Council of Canada, Canada

0371 | Minimization of Winding AC Losses using Inhomogeneous Electrical Conductivity Enabled by Additive Manufacturing

Fan Wu, Ayman M. El-Refaie Marquette University, United States

1082 | Investigation on the Potential of PCB Winding Technology for High-Dynamic and High-Precision Linear Actuators

Guillaume Colinet¹, William Lamberts¹, Francois Baudart², Bruno Dehez¹ Université Catholique de Louvain, Belgium

0561 | A Study of Switched Reluctance Motor using Grain-Oriented Electrical Steel Sheets

Yuzuki Tsuchiya¹, Kan Akatsu² ¹Shibaura Institute of Technology, Japan; ²Yokohama National University, Japan

0605 Comparative Analysis of PWM Power Losses in IPM Machines with Different Modulation Schemes using Wide-Bandgap-Based Inverters

Le Chang¹, Woongkul Lee¹, Thomas M. Jahns¹, Jihyun Kim² ¹University of Wisconsin- Madison, United States; ²General Motors Global Propulsion Systems, United States

0705 Design of an Iron Loss Tester for the Evaluation of Assembled Stator Cores of Electric Machines

Maged Ibrahim¹, Jaydeep Bhalala², Pragasen Pillay² ¹National Research Council, Canada; ²Concordia University, Canada

0936 | Identifying AC Loss Distributions in Electrical Machines through Experimentally Informed Virtual Prototyping

Dominic North, Nick Simpson, Phil Mellor University of Bristol, United Kingdom

Wednesday, October 14

S14 | Renewable Energy and Hybrid Energy Storage Systems

Chairs: Yongheng Yang, Ahmed Elasser

0150 | A Hybrid Model Parameter Extraction Method for Single-Diode Model of PV Module

Xiangjian Meng, Feng Gao, Tao Xu Shandong University, China

0356 | Power Electronic Implementation of Electrochemical Impedance Spectroscopy on Photovoltaic Modules

Olufemi I. Olayiwola, Paul S. Barendse University of Cape Town, South Africa

1003 Accelerated Aging Method and Lifetime Evaluation of Aluminum Electrolytic Capacitors for Power Electronic Application

Sagar B. Narale, Amit Verma, Sandeep Anand Indian Institute of Technology Kanpur, India

1087 | Practical Design and Evaluation of a High-Efficiency 30-kVA Grid-Connected PV Inverter with Hybrid Switch Structure

Hongwu Peng¹, Zhao Yuan¹, Dereje Lemma Woldegiorgis¹, Asif Imran Emon¹, Balaji Narayanasamy¹, Fang Luo¹, Alan Mantooth¹, Haider Ghazi Mhiesan¹, Yusi Liu² ¹University of Arkansas, United States;²On Semiconductor, United States

0572 | Optimal Planning of Renewable Energy Resources and Battery Storage System for an Educational Campus in South Australia

Rahmat Khezri¹, Amin Mahmoudi¹, Hirohisa Aki² ¹Flinders University, Australia; ²University of Tsukuba, Japan

0708 | A Cost-Effective Standalone E-Bike Charging Station Powered by Hybrid Wind and Solar Power System including Second-Life BESS

Cong-Long Nguyen¹, Ettore Colicchio², Paolo Primiani², Louis Viglione², Kamal Al-Haddad¹, Lyne Woodward¹ ¹École de Technologie Supérieure, Canada; ²Alizeti Ubimobil Inc., Canada

0382 | Energy Management Strategy for Ultracapacitors in Hybrid Electric Vehicles

Carlos Villarreal-Hernandez¹, Javier Loranca-Coutino¹, Omar F. Ruiz-Martinez², Jonathan C. Mayo-Maldonado², Jesus E. Valdez-Resendiz¹, Gerardo Escobar-Valderrama¹, Carolina Del-Valle-Soto², Julio C. Rosas-Caro² ¹Tecnologico de Monterrey, Mexico; ²Universidad Panamericana, Mexico

1253 A Hierarchical Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage Systems via Supervised Learning

Yao Lu, Weirong Liu, Yue Wu, Jiahao Huang, Hongtao Liao, Jun Peng, Zhiwu Huang, Yongjie Liu *Central South University, China*

9:00AM-9:30AM

Wednesday, October 14

9:00AM-9:30AM

S15 | DC-AC Three-Phase Converters

Chairs: Leila Parsa, Pahlevani Majid

0598 | Minimizing Losses Induced by Parasitic Winding Capacitance in Electric Drives by Means of Soft-Switching GaN-Based ARCP

Thiago Pereira¹, Klaus Krischan², Annette Muetze², Marco Liserre¹

¹Christian-Albrechts-Universität zu Kiel, Germany; ²Graz University of Technology, Austria

1585 | High-Frequency Quasi-Z-Source Inverter Concept for Short-Circuit Capable GaN-HEMT-Based Converters

Taichi Nakayama, Tomoyuki Mannen, Akira Nakajima, Takanori Isobe University of Tsukuba, Japan

0982 | Efficiency, Cost and Volume Comparison of Si-IGBT based T-NPC and 2-Level SiC-MOSFET based Topology with DV/DT Filter for High Speed Drives

Jelena Loncarski¹, Vito Giuseppe Monopoli¹, Riccardo Leuzzi², Pericle Zanchetta², Francesco Cupertino¹ ¹Politecnico di Bari, Italy; ²University of Nottingham, United Kingdom

0005 New Cascaded Converter Topologies for Transformerless Galvanic Active Isolation

Clint Halsted, Madhav Manjrekar University of North Carolina at Charlotte, United States

1577 | Region-Based Stability Analysis of Resilient Distribution Systems with Hybrid Grid-Forming and Grid-Following Inverters

Lizhi Ding¹, Yuxi Men¹, Yuhua Du¹, Xiaonan Lu¹, Bo Chen², Yuzhang Lin⁴, Jin Tan³ ¹Temple University, United States; ²Argonne National Laboratory, United States; ³National Renewable Energy Laboratory, United States; ⁴University of Massachusetts, Lowell, United States

1108 Power Control of Hybrid Grid-Connected Inverter to Improve Power Quality

Wooyoung Choi, Kyungsub Jung, Bulent Sarlioglu University of Wisconsin-Madison, United States

0650 | Current Limitation Strategy for Grid-Forming Converters under Symmetrical and Asymmetrical Grid Faults

Roberto Rosso¹, Soenke Engelken¹, Marco Liserre² ¹WRD GmbH, Germany; ²Christian-Albrechts Universitaet zu Kiel, Germany

1035 | Grid Application and Controls Development for Medium-Voltage SiC-Based Grid Interconnects

Akanksha Singh, Xiangqi Zhu, Barry Mather, Firehiwot Gurara National Renewable Energy Laboratory, United States

Virtual 4

Wednesday, October 14

9:00AM-9:30AM

S16 | Gate Drivers and Driving Techniques

Chairs: Tanya Gachovska, Hengzhao Yang

1053 Gate-Driver Integrated Junction Temperature Estimation of SiC MOSFET Modules

Slavko Mocevic¹, Vladimir Mitrovic¹, Jun Wang¹, Rolando Burgos¹, Dushan Boroyevich¹, Mehrdad Teimor², Marko Jaksic² ¹Virginia Polytechnic Institute and State University, United States; ²General Motors, United States

0723 | Hybrid Voltage Balancing approach for Series-Connected 10 kV SiC MOSFETs for DC-AC Medium-Voltage Power Conversion Applications

Xiang Lin, Lakshmi Ravi, Dong Dong, Rolando Burgos Virginia Polytechnic Institute and State University, United States

0770 | A 10 MHz GaN Driver IC with Bang-Bang Dead-Time Control for Synchronous Rectifier Buck Converter

Pin Ying Wang¹, Ping Kun Chiu¹, Sheng Teng Li¹, Ching Jan Chen¹, Chih Chao Hsu² ¹National Taiwan University, Taiwan; ²National Chung-Shan Institute of Science and Technology, Taiwan

1596 | Digital Active Gate Control for a Three-Phase Inverter Circuit for a Surge Voltage Suppression and Switching Loss Reduction

Daiki Yamaguchi¹, Yu Shan Cheng¹, Tomoyuki Mannen¹, Hidemine Obara², Keiji Wada¹, Makoto Takamiya³, Takayasu Sakurai³, Toru Sai³ ¹Tokyo Metropolitan University, Japan; ²Yokohama National University, Japan; ³The University of Tokyo, Japan

0808 | A GaN Driver IC with Novel Highly Digitally Adaptive Dead-Time Control for Synchronous Rectifier Buck Converter

Ping Kun Chiu¹, Pin Ying Wang¹, Sheng Teng Li¹, Ching Jan Chen¹, Yi Ting Chen² ¹National Taiwan University, Taiwan; ²National Chung-Shan Institute of Science and Technology, Taiwan

0421 | A Resonant Gate Driver with Variable Gain and a Capacitively Decoupled High-Side GaN-FET

Nathan Miles Ellis, Evan Sousa, Rajeevan Amirtharajah University of California-Davis, United States

0439 Automatic Search Method of Robust Gate Driving Vectors for Digital Gate Drivers against Variations in Operating Conditions of IGBT's

Ting-Wei Wang^{1,2}, Toru Sai¹, Ryuzo Morikawa¹, Katsuhiro Hata¹, Takayasu Sakurai¹, Makoto Takamiya¹, Po-Hung Chen² ¹The University of Tokyo, Japan; ²National Chiao Tung University, Taiwan

0317 | Design Guidelines of Current Source Gate Driver for Series Connected SiC MOSFETs

Chunhui Liu, Zhengda Zhang, Yifu Liu, Yunpeng Si, Mengzhi Wang, Qin Lei *Arizona State University, United States*

0262 Statistics-Based Switching Loss Characterization of Power Semiconductor Device

Jiayang Lin, Ke Ma, Ye Zhu Shanghai Jiao Tong University, China

Virtual 1

Wednesday, October 14

9:35AM-10:05AM

S17 | AC Machines and Drives

Chairs: Andrea Cavagnino, Mahesh Swamy

1059 Analytical Model and Performance Prediction of Induction Motors using Subdomain Technique

Emad Roshandel¹, Amin Mahmoudi¹, Solmaz Kahourzade², Wen Soong³ ¹Flinders University, Australia; ²University of South Australia, Australia; ³University of Adelaide, Australia

1514 On the Effects of Ultra-High Switching Frequency on PWM-Inverter-Fed Induction Motors

Giacomo Scelba¹, Danilo Camuglia¹, Giulio de Donato², Silvio Vaschetto³, Andrea Cavagnino³, Emmanuel Agamloh⁴ ¹University of Catania, Italy; ²Sapienza University of Rome, Italy; ³Politecnico di Torino, Italy; ⁴Baylor University, United States

1556 | Parameter Estimation of a Three Phase Induction Machine with a Solid Copper-Coated Rotor and a Large Air Gap

Christiane Mellak¹, Josef Deuringer², Annette Muetze¹ ¹Graz University of Technology, Austria; ²Siemens Healthcare GmbH, Germany

0264 Design of an Energy Efficient Outer Rotor Ceiling Fan Single Phase Induction Motor

Utkarsh Sharma, Bhim Singh Indian Institute of Technology Delhi, India

1568 Sensorless Cascade-Model Predictive Control Applied to a Doubly Fed Induction Machine

Jacopo Riccio¹, Shafiq Odhano², Mi Tang¹, Pericle Zanchetta¹ ¹University of Nottingham, United Kingdom; ²University of Newcastle, United Kingdom

1580 | Position Sensorless Control of PMSM Drives based on HF Sinusoidal Pulsating Voltage Injection

Jiali Liu, Yongchang Zhang, Haitao Yang, Wenjia Shen North China University of Technology, China

0214 | Novel Compensation Method of Digital Delay for High-Speed Permanent Magnet Synchronous Motor Under Low Carrier Ratio

Keyuan Huang, Jiaxin Zhou, He Zhao, Wei Lv, Shoudao Huang *Hunan University, China*

0657 | Saliency-Based Position Sensorless Drive for Permanent Magnet Machine with Low Cost Shunt Resistor Current Sensing using Modified PWM Voltage Injection

Jyun-You Chen, Kuo-Yuan Hung, Guan-Ren Chen, Shih-Chin Yang National Taiwan University, Taiwan

Virtual 2

Wednesday, October 14

9:35AM-10:05AM

S18 | Microgrids 1

Chairs: Meigin Mao, Lina He

0212 | Transient Load Sharing between Grid-Forming Generators in Islanded Microgrid

Yelun Peng¹, Xin Zhang², Li Zhan¹ ¹Nanyang Technological University, Singapore; ²Zhejiang University, China

1557 Autonomous Current Sharing Control with Integrated Virtual Impedance and Self Synchronisation for Unbalanced Islanded Microgrids

A.A. Nazib, D.G. Holmes, B.P. McGrath *RMIT University, Australia*

0634 | Improved Adaptive Filter FLL Control Algorithm for Enhancing Performance of Islanded Microgrid Supplying Dynamic Loads

Rohini Sharma, Seema Kewat, Bhim Singh Indian Institute of Technology-Delhi, India

1613 | A New Current Limiting and Overload Protection Strategy for Droop-Controlled Voltage-Source Converters in Islanded AC Microgrids under Grid Faulted Conditions

Zi-lin Li¹, Jiefeng Hu², Ka Wing Chan¹ ¹The Hong Kong Polytechnic University, Hong Kong; ²Federation University Australia, Australia

0676 | Reduced Battery Usage in a Hybrid Battery and Photovoltaic Stand-Alone DC Microgrid with Flexible Power Point Tracking

Hein Wai Yan¹, Aditi Narang¹, Hossein Dehghani Tafti², Glen G. Farivar¹, Josep Pou¹ ¹Nanyang Technological University, Singapore; ²University of New South Wales, Australia

1101 | Sharing Control Strategies for a Hybrid 48V/375V/400Vac AC/DC Microgrid

Carlos Gómez-Aleixandre, Ángel Navarro-Rodríguez, Geber Villa, Cristian Blanco, Pablo García University of Oviedo, Spain

0585 Adaptive PR and BBO based Control Strategy of Wind-Solar Integrated Standalone Microgrid for Residential Application

Farheen Chishti, Bhim Singh, Shadab Murshid Indian Institute of Technology-Delhi, India

Wednesday, October 14

9:35AM-10:05AM

S19 | Multilevel Converters 1

Chairs: Younghoon Cho, Marco di Benedetto

0029 | A Five-Switch Four-Level Converter

Jianfei Chen, Caisheng Wang Wayne State University, United States

0670 | A Novel 7-Level X-Boost Active Neutral Point Clamped Inverter

Haider Mhiesan, Dereje Woldegiorgis, Yuqi Wei, Alan Mantooth University of Arkansas, United States

1583 | A Pyramid-Type (PT) Multilevel Converter Topology

Vahid Dargahi¹, Keith Corzine², Arash Khoshkbar Sadigh³ ¹University of Washington, United States; ²University of California, Santa Cruz, United States; ³Pennsylvania State University, United States

0527 | A Family of Modular Multilevel Bidirectional DC-DC Converters for High Voltage-Ratio and Low Ripple Applications

Pekik Argo Dahono, Andriazis Dahono Institute of Technology Bandung, Indonesia

1360 A New Asymmetric 49-Levels Cascaded MPUC Multilevel Inverter Fed by a Single DC-Source

Samuel C.S. Júnior¹, Cursino Jacobina¹, Edgard L.L. Fabricio², Alan S. Felinto¹ ¹Federal University of Campina Grande, Brazil; ²Federal Institute of Paraíba, Brazil

0553 | A Seven-Level Switched Capacitor Inverter using Series/Parallel Conversion with Reduced Number of Switches

Masaki Sugiyama, Daiki Yamaguchi, Hirotaka Koizumi Tokyo University of Science, Japan

1479 Design of High-Power Density Interleaved 3-Phase 5-Level E-Type Back-to-Back Converter

M. di Benedetto¹, A. Lidozzi¹, L. Solero¹, F. Crescimbini¹, P.J. Grbović² ¹Roma Tre University, Italy; ²Innsbruck University, Australia

0916 New Cascaded-Transformers Multilevel Inverter for Renewable Distribution Systems

Ahmed Ismail M. Ali^{1,2}, Mahmoud A. Abdallah², Takaharu Takeshita¹ ¹Nagoya Institute of Technology, Japan; ²South Valley University, Egypt

0345 | A Novel Solid-State Transformer with Loosely Coupled Resonant Dual-Active-Bridge Converters

Jaehong Lee¹, Junghyeon Roh¹, Seung-Hwan Lee¹, Sungmin Kim², Myung-Yong Kim³ ¹University of Seoul, Korea; ²Hanyang University, Korea; ³Korea Railroad Research Institute, Korea

Wednesday, October 14

9:35AM-10:05AM

S20 | Device and Module Packaging

Chairs: Andrew Lemmon, Kristen Booth

1217 | High Power Density 1700-V/ 300-A Si-IGBT and SiC-MOSFET Hybrid Switch-Based Half-Bridge Power Module

Amol Deshpande, Asif Imran, Riya Paul, Zhao Yuan, Hongwu Peng, Fang Luo University of Arkansas, United States

0563 | Low-Inductance Double-Sided Cooling Power Module with Branched Lead Frame Terminals for EV Traction Inverter

Takeshi Tokuyama¹, Akira Mima¹, Yusuke Takagi², Akira Matsushita² ¹Hitachi, Ltd., Japan; ²Hitachi Automotive Systems, Ltd., Japan

0171 | Design of a Low Multi-Loop Inductance Three Level Neutral Point Clamped Inverter with GaN HEMTs

Eduard Dechant¹, Norbert Seliger¹, Ralph Kennel² ¹Technical University of Rosenheim, Germany; ²Technical University of Munich, Germany

1096 | A 16 kV PCB-Based DC-Bus Distributed Capacitor Array with Integrated Power-AC-Terminal for 10 kV SiC MOSFET Modules in Medium-Voltage Inverter Applications

Lakshmi Ravi, Xiang Lin, Dong Dong, Rolando Burgos Virginia Polytechnic Institute and State University, United States

0531 Applying GaN HEMTs in Conventional Housing-Type Power Modules

Lei Kou, Juncheng Lu GaN Systems Inc., Canada

1374 | Chip Metallization Aging Monitoring with Induced Voltage v_{eE} between Kelvin and Power Emitter for High Power IGBT Modules

Yu Chen, Fanxu Meng, Ankang Zhu, Wuhua Li, Xiangning He Zhejiang University, China

0504 | Fourier Analysis-Based Evolutionary Multi-Objective Multiphysics Optimization of Liquid-Cooled Heat Sinks

Raj Sahu, Emre Gurpinar, Burak Ozpineci Oak Ridge National Laboratory, United States

1236 | Reliability Enhancement of Power Modules by Restricting Junction Temperature Fluctuation through Increased Transient Thermal Capacity

Xin Fang¹, Huaping Jiang¹, Xiaoyong Wang¹, Weihua Shao¹, Hai Ren¹, Hengchun Mao², Li Ran¹ ¹Chongqing University, China; ²Quanten Technologies, United States

Wednesday, October 14

10:10AM-10:40AM

S21 | Permanent Magnet Machines

Chairs: Tsarafidy Raminosoa, Rajesh Deodhar

0336 | A Novel Asymmetric Rotor Interior PM Machine with Hybrid-Layer PMs

Yang Xiao¹, Zi-Qiang Zhu¹, Jin-Tao Chen², Di Wu², Li-Ming Gong² ¹The University of Sheffield, United Kingdom; ²Midea Shanghai Motors and Drives Research Center, China

1607 | Control of a Dual Fed Open End Winding SPMSM with a Floating Capacitor

Davide Minaglia¹, Luca Rovere², Andrea Formentini², Riccardo Leuzzi³, Sabino Pipolo², Pericle Zanchetta², Mario Marchesoni⁴

¹Danieli Automation S.P.A., Italy; ²University of Nottingham, United Kingdom; ³University of Pavia, Italy; ⁴University of Genoa, Italy

0699 | A Novel Toroidal Permanent Magnet Motor Structure with High Torque Density and Enhanced Cooling

Maged Ibrahim, Fabrice Bernier, Jean-Michel Lamarre National Research Council of Canada, Canada

0157 | A Novel Spoke-Type Asymmetric Rotor Interior PM Machine

Yang Xiao¹, Zi-Qiang Zhu¹, Jin-Tao Chen², Di Wu², Li-Ming Gong² ¹The University of Sheffield, United Kingdom; ²Midea Shanghai Motors and Drives Research Center, China

0290 Difference in Reluctance Torque Utility between Concentrated and Distributed Windings

Akeshi Takahashi, Wataru Hatsuse Hitachi, Ltd, Japan

1467 Optimal Study of a High Specific Torque Vernier-Type Axial-flux PM Machine with Two Different Stators and a Single Winding

Murat G. Kesgin, Peng Han, Narges Taran, Dan M. Ionel University of Kentucky, United States

0250 | Sensorless Capacity Evaluation of a New Five-Phase Flux-Intensifying Fault-Tolerant Interior-Permanent-Magnet Motor

Li Zhang, Xiaoyong Zhu, Lei Xu, Deyang Fan Jiangsu University, China

0494 A Method to Estimate the Worst-Case Torque Ripple under Manufacturing Uncertainties for Permanent Magnet Synchronous Machines

Yongxi Yang¹, Nicola Bianchi², Gerd Bramerdorfer³, Yong Kong⁴, Chengning Zhang¹, Shuo Zhang¹ ¹Beijing Institute of Technology, China; ²University of Padova, Italy; ³Johannes Kepler University Linz, Austria; ⁴Southeast University, China

1007 | Design and Analysis of Double-Stator Flux Modulated Permanent Magnet Motor based on Flux Modulation Theory

Deyang Fan¹, Li Quan¹, Xiaoyong Zhu¹, Peng Han², Zixuan Xiang¹ ¹Jiangsu University, China; ²University of Kentucky, United States

Wednesday, October 14

10:10AM-10:40AM

S22 | Converters for Electric Vehicles

Chairs: Yilmaz Sozer, Mohamed Badawy

1326 An Improved Pre-Filtering Moving Average Filter based Synchronization Algorithm for Single-Phase V2G Application

Komal Saleem¹, Kamyar Mehran¹, Zunaib Ali²

¹Queen Mary University of London, United Kingdom; ²Northumbria University Newcastle, United Kingdom

0782 | Bidirectional Universal Converter Transformer Design for Electric Vehicle Onboard Charging

Jacob Buys¹, Ameer Janabi¹, Wei Qian¹, Xiaorui Wang¹, Yunting Liu¹, Xi Lu², Ke Zou², Chingchi Chen², Fang Z. Peng, Bingsen Wang¹

¹Michigan State University, United States; ²Ford Motors, United States; ³Florida State University, United States

0515 | A Novel Multipurpose V2G and G2V Power Electronics Interface for Electric Vehicles

Tamanwè Payarou, Pragasen Pillay Concordia University, Canada

1265 Control of SiC based Integrated DC-DC Powertrain Charger for Electric Vehicles

Saeed Anwar¹, Daniel Costinett¹, Subhajyoti Mukherjee², Shajjad Chowdhury² ¹The University of Tennessee, United States; ²Oak Ridge National Laboratory, United States

0901 | Integrated Isolated OBC for EVs with 6-Phase Traction Motor Drives

Paolo Pescetto, Gianmario Pellegrino Politecnico di Torino, Italy

0798 | Modeling, Analysis, Design, and Verification of a Reduced Model Capacitive Power Transfer based Wireless Charging System

Deepa Vincent, Sheldon S. Williamson Ontario Tech University, Canada

Virtual 3

Wednesday, October 14

10:10AM-10:40AM

S23 | AC-DC and AC-AC Converters

Chairs: Pritam Das, Z. John Shen

1044 | Predictive Direct DC-Link Control for Active Power Decoupling of a Single-Phase Reduced DC-Link MV Solid-State Transformer

Liran Zheng, Rajendra Prasad Kandula, Deepak Divan Georgia Institute of Technology, United States

0955 | Modular Filter Building Block for Modular full-SiC AC-DC Converters by an Arrangement of Coupled Inductors

Sungjae Ohn¹, Ripun Phukan¹, Dong Dong¹, Rolando Burgos¹, Dushan Boroyevich¹, Sebastian Nielebock², Mondal Gopal² ¹Virginia Polytechnic Institute and State University, United States; ²Siemens AG Corporate Technology, Germany

1112 Architecture and Control of an Interleaved 6-Level Bidirectional Converter with an Active Energy Buffer for Level-II Electric Vehicle Charging

Zitao Liao¹, Derek Chou¹, Kelly Fernandez¹, Yong-Long Syu², Robert C.N. Pilawa-Podgurski¹ ¹University of California-Berkeley, United States; ²National Taiwan University of Science and Technology, Taiwan

1062 | Single-Phase Multilevel Rectifier based on Series and Parallel Connections

Filipe Vieira Rocha¹, Cursino Brandão Jacobina¹, Antonio de Paula Dias Queiroz², Nady Rocha² ¹Federal University of Campina Grande, Brazil; ²Federal Institute of Paraíba, Brazil

0478 | SVPWM Strategy of Matrix Converter Fed Asymmetrical Six-Phase Induction Motor with Common-Mode Voltage Elimination and Unity Power-Factor Operation

Sayan Paul, Kaushik Basu Indian Institute of Science, India

0586 An Advanced Commutation Method for Bidirectional Isolated Three-Phase AC/DC Dual-Active-Bridge Converter based on Matrix Converter

Kazuma Sumiya¹, Yuji Naito¹, Jin Xu², Noboru Shimosato², Yukihiko Sato¹ ¹Chiba University, Japan; ²Myway Plus Corp., Japan

0781 | Multilevel Single-Phase AC-DC-AC Converter based on Packed U Cell

Jean T. Cardoso¹, Cursino B. Jacobina¹, Maxsuel F. Cunha¹, Antonio de P.D. Queiroz², Samuel C.S. Júnior¹ ¹Federal University of Campina Grande, Brazil; ²Federal Institute of Paraíba, Brazil

1579 Modulated Model Predictive Control for the 3TSMC

Guanguan Zhang¹, Hui Wang², Chenghui Zhang¹ ¹Shandong University, China; ²Central South University, China

Virtual 4

Wednesday, October 14

10:10AM-10:40AM

S24 | Circuits and Topologies for Wind Power Conversion

Chairs: Frede Blaabjerg, Wei Qiao

1313 | Unit Partition Method for the Resonance Research in the DC-Link Busbar of Back-to-Back Converter

Yangyang Meng¹, Zipeng Liang¹, Sideng Hu¹, Zhenyu Ma², Xiangning He¹ ¹Zhejiang University, China; ²CRRC Zhuzhou Institute Co. Ltd, China

0369 | Investigation of a New Voltage Balancing Circuit for Parallel-Connected Offshore P MSG-Based Wind Turbines

Ahmed A. Elserougi¹, Otavio Bertozzi², Ahmed M. Massoud³, Shehab Ahmed² ¹Alexandria University, Egypt; ²King Abdullah University of Science and Technology, Saudi Arabia; ³Qatar University, Qatar

0114 Variable Stator Frequency Diode Rectifier DFIG for Lower Cost MVDC Interface

Chao Wu¹, Ion Boldea², Dao Zhou¹, Lucian Tutelea², Frede Blaabjerg¹ ¹Aalborg University, Denmark; ²Politehnica University of Timisoara, Romania

0333 | Integrated Generator-Rectifier Co-Design for Offshore Wind Turbines

Phuc Huynh, Samith Sirimanna, Jay Mok, Dongsu Lee, Olaolu Ajala, Daniel Mulas, Kiruba Haran, Alejandro Dominguez-Garcia, George Gross, Arijit Banerjee University of Illinois at Urbana-Champaign, United States

1069 | Half-Controlled Converters Connecting Open-End Winding Doubly-Fed Induction Generator to a DC-Microgrid

Emerson L. Soares¹, Cursino B. Jacobina¹, Ítalo André C. Oliveira¹, Nady Rocha², Victor Felipe M.B. Melo² ¹Federal University of Campina Grande, Brazil; ²Federal University of Paraíba, Brazil

1131 Cascaded Three-Phase H-Bridge Converter Applied as Series Active Compensator for DFIG-Based Wind Energy Conversion Systems

Italo A. Cavalcanti de Oliveira¹, Cursino Brandão Jacobina¹, Emerson de Lacerda Soares¹, Nady Rocha² ¹Federal University of Campina Grande, Brazil; ²Federal University of Paraíba, Brazil

0536 Reduced-Size Converter in DFIG-Based Wind Energy Conversion System

Rasoul Akbari, Afshin Izadian Purdue School of Engineering and Technology, United States

0993 | Stand-Alone Wind Power System with Improved Light-Power Efficiency

Ramtin Rasoulinezhad, Ebrahim Mohammadi, Adel Abosnina, Gerry Moschopoulos *Western University, Canada*

Virtual 1

Wednesday, October 14

11:00AM-11:30AM

S25 | Thermal Analysis in Electric Machines

Chairs: Antonio Griffo, Nick Simpson

0877 | A Feasibility Study of Heat Pipes for Thermal Management of Electrical Machines

Rafal Wrobel, David Reay Newcastle University, United Kingdom

1473 A Rotating Double Layer Capacitive Slip Ring Concept for Power & Heat Transfer in Machines using an Ionic Conducting Working Fluid

Daniel C. Ludois, Kevin Frankforter University of Wisconsin-Madison, United States

0086 Measurement of Rotor Thermal Time-Constant for Permanent Magnet Synchronous Machines

Eric Armando, Aldo Boglietti, Salvatore Musumeci, Sandro Rubino, Enrico Carpaneto, Daniele Martinello *Politecnico di Torino, Italy*

0120 | Improved Cooling in Modular Consequent Pole PM Machine Utilizing Flux Gaps

R. Zhou, G.J. Li, Z.Q. Zhu, M.P. Foster, D.A. Stone The University of Sheffield, United Kingdom

0517 | Measurement-Based Optimization of Thermal Networks for Temperature Monitoring of Outer Rotor PM Machines

Daniel Wöckinger¹, Gerd Bramerdorfer¹, Stephan Drexler¹, Silvio Vaschetto², Andrea Cavagnino², Wolfgang Amrhein¹, Frank Jeske³

¹ Johannes Kepler University Linz, Austria; ²Politecnico di Torino, Italy; ³EBM-Papst St. Georgen GmbH and Co. KG, Germany

0856 | Characterization of the Thermal Performances of Low-Cost Sub-Fractional Horsepower BLDC Claw-Pole Motor Designs

Stefan Leitner, Thomas Kulterer, Hannes Gruebler, Annette Muetze *Graz University of Technology, Austria*

0049 | Electromagnetic-Thermal Coupled Fault Analysis of PMASynRM with Turn-to-Turn Short Circuit involving a Few Strands

Yanwen Shi, Jiabin Wang, Bo Wang ¹University of Sheffield, United Kingdom

1031 | A Fast Calculation Method for Steady State Performance of High Speed Traction Induction Machine by Finite Element Analysis

Haiwei Cai Southeast University, China

Virtual 2

Wednesday, October 14

11:00AM-11:30AM

S26 | Grid-Connected Inverters

Chairs: Dong Dong, Bo Wen

0649 | Grid-Forming Converters: An Overview of Control approaches and Future Trends

Roberto Rosso¹, Xiongfei Wang², Marco Liserre³, Xiaonan Lu⁴, Soenke Engelken¹ ¹WRD GmbH, Germany; ²Aalborg University, Denmark; ³Christian-Albrechts Universitaet zu Kiel, Germany; ⁴Temple University, United States

0981 | A Grid-Forming Multi-Port Converter using Unified Virtual Oscillator Control

M.A. Awal, Md Rashed Hassan Bipu, Siyuan Chen, Mehnaz Khan, Wensong Yu, Iqbal Husain North Carolina State University, United States

1306 A Pre-Synchronization Strategy for Grid-Forming Virtual Oscillator Controlled Inverters

Minghui Lu¹, Soham Dutta¹, Victor Purba², Sairaj Dhople², Brian Johnson¹ ¹University of Washington, United States; ²University of Minnesota, United States

1458 Developing a Machine Equivalent Inertial Response for a Virtual Oscillator Controlled Inverter in a Machine-Inverter based Microgrid

Jiacheng Li¹, John E. Fletcher¹, D.G. Holmes², B.P. McGrath² ¹University of New South Wales, Australia; ²RMIT, Australia

1309 | PLL-Less Active and Reactive Power Controller for Grid-Following Inverter

Ahmad Khan^{1,2}, Mitchell Easley¹, Mohsen Hosseinzadehtaher^{1,2}, Mohammad B. Shadmand^{1,2}, Haitham Abu-Rub³, Poria Fajri⁴

¹Kansas State University, United States; ²University of Illinois at Chicago, United States; ³Texas A&M University at Qatar, Qatar; ⁴University of Nevada-Reno, United States

0472 | Current Harmonic Analysis of Multisampled LCL-Type Grid-Connected Inverter

Shan He, Yiwei Pan, Dao Zhou, Xiongfei Wang, Frede Blaabjerg Aalborg University, Denmark

0481 | Multisampling Control of LCL-Type Grid-Connected Inverter with an Improved Repetitive Filter

Shan He, Dao Zhou, Xiongfei Wang, Frede Blaabjerg Aalborg University, Denmark

Wednesday, October 14

11:00AM-11:30AM

S27 | Multilevel Converters 2

Chairs: Montie Vitorino, Dragan Maksimov

0240 Switched Capacitor MMC Submodule Voltage Balancing with Reduced Number of Voltage Sensors

Robson Bauwelz Gonzatti^{1,2}, Qichen Yang², Hamed Pourgharibshahi², Fang Peng² ¹Federal University of Itajuba, Brazil; ²Florida State University, United States

0828 A Simple Carrier-Based Implementation for a General 3-Level Inverter using Nearest Three Space Vector PWM Approach

Aditya Dholakia¹, Sayan Paul¹, Shailesh Ghotgalkar², Kaushik Basu¹ ¹Indian Institute of Science, India; ²Texas Instrument, India

0913 | A New Voltage-Balance Control Method for a Four-Level Hybrid-Clamped Converter

Jianfei Chen¹, Jianyu Pan², Caisheng Wang¹, Jian Li² ¹Wayne State University, United States; ²Chongging University, China

0314 | Simplified Model Predictive Control of Multilevel Converters with Internal Identical Structure

Dehong Zhou¹, Zhongyi Quan², Yunwei (Ryan) Li² ¹University of Electronic Science and Technology of China, China; ²University of Alberta, Canada

1339 Ripple Decoupling of Modular Multilevel Converter with Flux Cancelled Three-Port Converter

Yifu Liu, Yunpeng Si, Mengzhi Wang, Zhengda Zhang, Chunhui Liu, Qin Lei Arizona State University, United States

0807 | Steady-State Analysis of the Switched-Capacitor Modular Multilevel Converter with F-Matrix Modulation

Qichen Yang¹, Robson Bauwelz Gonzatti^{1,2}, Hamed Pourgharibshahi¹, Fang Peng¹ ¹Florida State University, United States; ²Federal University of Itajuba, Brazil

0473 | A Bidirectional Modular Multilevel Resonant DC-DC Converter for Medium Voltage Power Conversion

Wentao Cui, Shuai Shao, Jianjia Zhang, Yucen Li, Junming Zhang *Zhejiang University, China*

0983 | Evaluation of Medium Voltage SiC Flying Capacitor Converter and Modular Multilevel Converter

Da Jiao, Qingyun Huang, Alex Q. Huang The University of Texas at Austin, United States

0720 Three-Phase Multilevel Flying Capacitor Rectifier with Reduced Switch Count

Ailton do Egito Dutra, Montiê Alves Vitorino, Maurício Beltrão de Rossiter Corrêa Federal University of Campina Grande, Brazil

Wednesday, October 14

11:00AM-11:30AM

S28 | Batteries and Battery Converters

Chairs: Harish Krishnamoorthy, Sheldon Williamson

0097 | Fuzzy Entropy-Based State of Health Estimation of LiFePO₄ Batteries Considering Temperature Variation

Xin Sui¹, Shan He¹, Jinhao Meng², Remus Teodorescu¹, Daniel-Ioan Stroe¹ ¹Aalborg University, Denmark;²Sichuan University, China

1114 Online Li-Ion Battery State of Health Implementation for Grid-Tied Applications

Irene Peláez¹, Ramy Georgious¹, Sarah Saeed¹, Pablo García¹, Igor Cantero² ¹University of Oviedo, Spain; ²CEGASA Energía, Spain

0056 Voltage Variation with Hybrid Pulse as a Novel Indicator for Lifetime Estimation of Li-Ion Battery using in Smart Grid

Shiqi Liu, Junhua Wang, Qisheng Liu, Jia Tang, Haolu Liu Wuhan University, China, China

0302 | Simple and Low-Cost Online AC Ripple Current Injection Methods for a Single-Cell Li-Ion Battery

Julio C. Yela, Abdulraouf Benshatti, Thomas Link, S.M. Rakiul Islam, Sung-Yeul Park University of Connecticut, United States

1562 | Digital Multi-Loop Control of an LLC Resonant Converter for Electric Vehicle DC Fast Charging

Davide Cittanti, Matteo Gregorio, Eric Armando, Radu Bojoi Politecnico di Torino, Italy

1041 Active Equalization of Series/Parallel Li-Ion Battery Modules including No-Load Conditions

Miguel Crespo¹, Ramy Georgious², Pablo García², Geber Villa² ¹Cegasa Energía, S.L.U., Spain; ²University of Oviedo, Spain

1105 | Multi-Objective Optimization of Triple Port Converter for Photovoltaic and Energy Storage Integration

Sneha Thakur, Ghanshyamsinh Gohil, Poras T. Balsara The University of Texas at Dallas, United States

0898 A Fast Energy-Efficient Pulse Preheating Strategy for Li-Ion Battery at Subzero Temperatures

Zhiwu Huang, Zhiwei Gao, Yongjie Liu, Kaifu Guan, Hongtao Liao, Yinhui Le, Fu Jiang, Jun Peng Central South University, China

Virtual 1

Wednesday, October 14

11:35AM-12:05PM

S29 | Machine Diagnostics and Protection

Chairs: Narges Taran, Bryan P. Ruddy

0678 Challenges of Common Mode Current and Voltage Acquisition for Stator Winding Insulation Health Monitoring

Fernando Alvarez-Gonzalez, David Hewitt, Antonio Griffo, Jiabin Wang The University of Sheffield, United Kingdom

1077 | Detection and Compensation of Inter-turn Short Circuits in Interior Permanent Magnet Synchronous Machines with 2-Level Voltage Source Inverter

Pablo Castro Palavicino, Woongkul Lee, Bulent Sarlioglu University of Wisconsin-Madison, United States

1397 | Effect of System Grounding, AC-DC Converter Topology and Inverter Modulation on Motor Insulation Voltage Stress

G.Y. Sizov, Z. Vrankovic, M.J. Melfi, G.L. Skibinski, Zhijun Liu *Rockwell Automation, United States*

0349 | A Novel Method of Monitoring and Locating Stator Winding Insulation Ageing for Inverter-Fed Machine based on Switching Harmonics

Dayong Zheng, Pinjia Zhang Tsinghua University, China

0233 | Triaxial Smart Sensor based on the Advanced Analysis of Stray Flux and Currents for the Reliable Fault Detection in Induction Motors

Israel Zamudio-Ramirez^{1,2}, Roque A. Osornio-Rios¹, Jose Antonino-Daviu² ¹Universidad Autonoma de Querétaro, Mexico; ²Universitat Politecnica de Valencia, Spain

0604 | Bispectrum Analysis of Stray Flux Signals for the Robust Detection of Winding Asymmetries in Wound Rotor Induction Motors

Miguel E. Iglesias-Martínez¹, Pedro Fernández de Córdoba², Jose Alfonso Antonino-Daviu², J. Alberto Conejero² ¹Universidad de Pinar del Río, Cuba; ²Universitat Politècnica de València, Spain

0251 | Flux-Based Detection and Classification of Induction Motor Eccentricity, Rotor Cage,

and Load Defects Jaehoon Shin, Yonghyun Park, Sang Bin Lee Korea University, Korea

0939 | Fault Tolerance Analysis of a Ironless PM Machine for Energy Storage

Claudio Bianchini¹, Ambra Torreggiani¹, Danilo David², Matteo Davoli², Alberto Bellini³ ¹University of Modena and Reggio Emilia, Italy; ²Raw Power srl, Italy; ³University of Bologna, Italy

Virtual 2

Wednesday, October 14

11:35AM-12:05PM

S30 | Power Converter Control and Applications

Chairs: Ruxi Wang, Igor Cvetkovic

0794 Grid-Connected Converter without Interfacing Filters: Principle, Analysis and Implementation

Yuchen He¹, Yuan Li¹, Qichen Yang¹, Robson Bauwelz Gonzatti^{1,2}, Allan Taylor³, Fangzheng Peng 1 ¹Florida State University, United States; ²Federal University of Itajuba, Brazil; ³Kettering University, United States

0241 Virtual Impedance-Based Grid Synchronization for Converters Connected through Long Cables

Robson Bauwelz Gonzatti^{1,2}, Bokang Zhou², Yuchen He², Allan R. Taylor³, Fang Peng² ¹Federal University of Itajuba, Brazil; ²Florida State University, United States; ³Kettering University, United States

1248 | Negative Virtual Capacitance to Eliminate Resonance Oscillations in a Three-Phase Inverter with LCL Filter

Vikram Roy Chowdhury, Jonathan W. Kimball Missouri University of Science and Technology, United States

1219 A Comparative Study between the PQ and IV Droop Control

Gustavo P. de Pontes, Camila S. Gehrke, Edison R. Cabral da Silva, Fabiano Salvadori, Lucas V. Hartmann Universidade Federal da Paraíba, Brazil

0325 | Integrated Magnetics Design for an Interleaved Three-Phase Buck Converter

Yu-Chen Liu¹, Chen Chen², Yu-Chen Chung¹, Meng-Chi Tsai¹, Kim Ann Katherine³ ¹National Ilan University, Taiwan; ²National Taiwan University of Science and Technology, Taiwan; ³National Taiwan University, Taiwan

0397 Reduction of Vital Sensors in RSyM based Solar Water Pumping System

Hina Parveen, Utkarsh Sharma, Bhim Singh Indian Institute of Technology-Delhi, India

1496 | Demand Response of HVACs in Large Residential Communities based on Experimental Developments

Huangjie Gong¹, Evan S. Jones¹, Rosemary E. Alden¹, Andrew G. Frye¹, Donald Colliver², Dan M. Ionel¹ ¹Tennessee Valley Authority, United States; ²University of Kentucky, United States

0004 | Hierarchical Control of Heterogeneous Inverter Air-Conditionings for Primary Frequency Regulation

Tingyu Jiang¹, Ping Ju¹, Wenjie Ruan¹, Yang Yang², Jian Zhao², Fu Shen² ¹Hohai University, China; ²State Grid Taizhou Power Supply Co., China; ³State Grid Nanjing Power Supply Co., China

Wednesday, October 14

11:35AM-12:05PM

S31 | AC-DC Power Converters

Chairs: Mehdi Narimani, Mohamed Youssef

1065 | Three-Phase Bidirectional Buck-Boost Current DC-Link EV Battery Charger featuring a Wide Output Voltage Range of 200 to 1000V

Daifei Zhang¹, Mattia Guacci¹, Michael Haider¹, Dominik Bortis¹, Johann W. Kolar¹, Jordi Everts² ¹ETH Zürich, Switzerland; ²Prodrive Technologies, Netherlands

1198 | Isolated Three-Phase AC to DC Converter with Matrix Converter Applying Wide Output Voltage Operation

Jun-ichi Itoh, Satoshi Nakamura, Shunsuke Takuma, Hiroki Watanabe Nagaoka University of Technology, Japan

0783 | A Direct Three-Phase AC to DC Rectifier with a High-Frequency Open Delta Transformer Isolation

Erick I. Pool-Mazun¹, Jose Juan Sandoval¹, Prasad Enjeti¹, Ira J. Pitel² ¹Texas A&M University, United States; ²Magna-Power Electronics Inc., United States

0161 Control of a Three-Phase Diode Rectifier with an Instantaneous Reactive Power Compensator

Nuilers Surasak, Hideaki Fujita Tokyo Institute of Technology, Japan

1168 | A Three-Phase Isolated Rectifier using Current Unfolding and Active Damping Methods

Ha Pham N.¹, Tomoyuki Mannen², Keiji Wada³ ¹University of Technology-Sydney, Australia; ²University of Tsukuba, Japan; ³Tokyo Metropolitan University, Japan

1565 A Single Stage 1.65kW AC-DC LLC Converter with Power Factor Correction (PFC) for On-Board Charger (OBC) Application

Wenbo Liu, Andrew Yurek, Bo Sheng, Yang Chen, Yan-Fei Liu, Paresh C. Sen *Queen's University, Canada*

0879 | Electrolytic Capacitor-Less Quasi-Single-Stage AC/DC Converter with Controllable Rectifier Circuits

Zhennan Wang¹, Shengwen Fan¹, Zhenyu Shan², Xiaofeng Ding² ¹North China University of Technology, China; ²Beihang University, China

1340 Self-Synchronized Class E Resonant Rectifier with Direct Voltage Detection Method

Minki Kim, Jungwon Choi University of Minnesota, United States

1204 | Multilevel Single-Phase Four-Leg AC-DC-AC Converter

Phelipe L.S. Rodrigues, Cursino B. Jacobina, Antônio M.N. Lima Federal University of Campina Grande, Brazil

Virtual 4

Wednesday, October 14

11:35AM-12:05PM

S32 | Microgrids 2

Chairs: Akshay Rathore, Yue Zhao

0126 | An Adaptive Virtual Impedance Control for Improving Power Sharing among Inverters in Islanded AC Microgrids

A.S. Vijay, N. Parth, Suryanarayana Doolla, Mukul C. Chandorkar Indian Institute of Technology-Bombay, India

1208 Distributed Average Observation in Inverter Dominated Dynamic Microgrids

Yuhua Du¹, Xiaonan Lu¹, Bo Chen², Jianzhe Liu², Xiongfei Wang³, Frede Blaabjerg³ ¹Temple University, United States; ²Argonne National Laboratory, United States; ³Aalborg University, Denmark

0226 | Toward Distributed Control for Reconfigurable Robust Microgrids

Xia Miao¹, Marija Ilić¹, Christopher Smith², Matthew Overlin², Ryan Wiechens² ¹Massachusetts Institute of Technology, United States; ²MIT Lincoln Laboratory, United States

1254 Controller Design and Implementation of a Medium Voltage (13.8 kV) Modular Multi-Level Converter for Asynchronous Microgrids

Dingrui Li¹, Xingxuan Huang¹, Shiqi Ji¹, Cheng Nie¹, Fred Wang^{1,2}, Leon M. Tolbert^{1,2} ¹The University of Tennessee, United States; ²Oak Ridge National Laboratory, United States

1049 Dual State-Parameter Estimation for Series Arc Fault Detection on a DC Microgrid

Kaushik Gajula, Xiu Yao, Luis Herrera University at Buffalo, United States

1098 Communicationless Power Management Strategy for the Multiple-DAB-Based Energy Storage System in Isolated DC Microgrid

Nie Hou, Yun Wei Li, Li Ding University of Alberta, Canada

0953 | Distributed Control and Power Management of Islanded DC Nanogrids with Applications to Rural Electrification

Ali Arsalan¹, Jameel Ahmad², Muhammad Tahir³, Sudip K. Mazumder⁴ ¹Khwaja Fareed University of Engineering and Information Technology, Pakistan; ²University of Management and Technology Lahore, Pakistan; ³University of Engineering and Technology Lahore, Pakistan; ⁴University of Illinois at Chicago, United States

0923 | Uncertainty Reduction for Data Centers in Energy Internet by a Compact AC-DC Energy Router and Coordinated Energy Management Strategy

Javad Khodabakhsh, Gerry Moschopoulos Western University, Canada

Wednesday, October 14

12:10PM-12:40PM

S33 | Switched Reluctance and Flux Switching Machines

Chairs: Gerd Bramerdorfer, Silvio Vaschetto

1544 | Direct Voltage Controller for SRMs in Achieving Torque Ripple Minimization over Wide Speed Range

Okan Boler, Omer Gundogmus, Yilmaz Sozer The University of Akron, United States

0010 Voltage Pulsation Induced in DC Field Winding of Different Hybrid Excitation Switched Flux Machines

Xiaoyong Sun, Zi-Qiang Zhu, Fangrui Wei The University of Sheffield, United Kingdom

0881 | The Effectiveness of Radial Force Sum Flattening for Vibration Mode 0 and Noise Reduction in Switched Reluctance Motor

Candra Adi Wiguna¹, Yifei Cai¹, Atsuya Ohashi², Jihad Furqani³, Junichi Asama², Akira Chiba¹ ¹Tokyo Institute of Technology, Japan; ²Shizuoka University, Japan; ³Bandung Institute of Technology, Indonesia

0619 Design and Performance Analysis of Switched Reluctance Motor with Inner Holes to Reduce Radial Force

Grace Firsta Lukman, Xuan Son Nguyen, Kwang-Il Jeong, Jin-Woo Ahn Kyungsung University, Korea

0621 | Reduction Method of Torque Ripple, DC Current Ripple, and Radial Force Ripple with Control Flexibility of Five-Phase SRM

Takahiro Kumagai, Jun-Ichi Itoh, Keisuke Kusaka Nagaoka University of Technology, Japan

1104 Design of a Novel Integrated Switched Reluctance Motor-Compressor

Ahmed Hembel, Hao Ding, Leyue Zhang, Bulent Sarlioglu University of Wisconsin-Madison, United States

0866 Analytical and Experimental Investigations of Radial Force Detection by Strain Gauge for Possible Application for Switched Reluctance Machines

Yifei Cai¹, Candra Adi Wiguna¹, Hiroya Sugimoto², Akira Chiba¹ ¹Tokyo Institute of Technology, Japan; ²Tokyo Denki University, Japan

Wednesday, October 14

12:10PM-12:40PM

S34 | Inverter-Based Resources for Power Quality Enhancement

Chairs: Igor Cvetkovic, Jingxin Wang

0461 | CIMMCC and MSTOGI based Solar PV System for Improvement in Power Quality under Grid Voltage Variation

Abhishek Ranjan, Seema Kewat, Bhim Singh, Rohini Sharma Indian Institute of Technology-Delhi, India

0257 | Power Oscillation Control of Grid-Feeding Converter Considering Next Generation Grid Code during Asymmetrical Faults

Yu Feng¹, Zhikang Shuai¹, Jun Ge¹, Huimin Zhao¹, Z. John Shen² ¹Hunan University, China; ²Illinois Institute of Technology, United States

0436 | Solar Photovoltaic Array Fed Unified Power Quality Conditioner System Enabling Alleviation of Asymmetrical Voltage Sag

Sanjenbam Chandrakala Devi¹, Bhim Singh¹, Priyank Shah², Sachin Devassy³, Hina Parveen¹ ¹Indian Institute of Technology-Delhi, India; ²The University of Warwick Coventry, United Kingdom; ³CSIR-Central Electronics Engineering Research Institute, India

1368 | Resonance Suppression based on Predictive Control of Grid-following Inverters with LCL Filter in Weak Grid Condition

Muhammed Farooq Umar^{1,2}, Ahmad Khan^{1,2}, Mitchell Easley¹, Silvanus D'silva¹, Brevann Nun¹, Mohammad B. Shadmand^{1,2} ¹Kansas State University, United States; ²University of Illinois at Chicago, United States

0172 | A Novel Phase-Locked Loop based Four-Leg Converter Control for Unbalanced Load Compensation under Distorted and Unbalanced Grid Condition

Shilei Jiao, Krishna Raj R., Kaushik Rajashekara University of Houston, United States

0258 Development of a Hybrid Cascaded Converter based STATCOM with Reduced Switching Losses

Yu-Chen Su, Po-Tai Cheng National Tsing Hua University, Taiwan

0984 State-Feedback-Based Low-Frequency Active Damping of VSC Operating in Weak-Grid Conditions

Federico Cecati¹, Rongwu Zhu¹, Marco Liserre¹, Xiongfei Wang² ¹Christian-Albrechts-Universität Kiel, Germany; ²Aalborg University, Denmark

1202 Universal Active Power Filter based on AC-DC-AC Converter with Six Controlled Switches for Single-Phase Systems

Phelipe L.S. Rodrigues, Cursino B. Jacobina, Antônio M.N. Lima Federal University of Campina Grande, Brazil

Wednesday, October 14

S35 | DC-DC Converters for Renewable Energy Applications

Chairs: Santanu Mishra, Giorgio Spiazzi

0989 | Improvement of DC Nanogrid Energy Performance with a New Multi-Port Converter

Ramtin Rasoulinezhad, Adel Abosnina, Gerry Moschopoulos *Western University, Canada*

1350 | A High Gain DC-DC Topology based on Two-Winding Coupled Inductors Featuring Continuous Input Current

Mohsen Mahmoudi¹, Ali Ajami¹, Ebrahim Babaei², Nima Abdolmaleki³, Caisheng Wang³ ¹Azarbaijan Shahid Madani University, Iran; ²University of Tabriz, Iran; ³Wayne State University, United States

0767 | A Novel Single-Switch High Step-Up DC-DC Converter with Low Voltage Stress on Active Components

Pedram Chavoshipour Heris¹, Zahra Saadatizadeh¹, Frede Blaabjerg² ¹University of Tabriz, Iran; ²Aalborg University, Denmark

1025 | New CRM Topology for Zero Voltage Switching in Quadratic High Gain Boost Converter

Nikhil Korada, Raja Ayyanar Arizona State University, United States

0396 | Low Side Switch based Regenerative Snubber Circuit for Flyback Converter

Saumya Bohra¹, Arnab Sarkar¹, Sandeep Anand^{1,2} ¹Indian Institute of Technology-Kanpur, India; ²Indian Institute of Technology-Bombay, India

0229 | Minimum Current-Ripple Point Tracking for Renewable Energy Applications

C.A. Villarreal-Hernandez¹, J. Loranca-Coutino¹, O.F. Ruiz-Martinez², J.C. Mayo-Maldonado¹, J.E. Valdez-Resendiz¹, Daniel Guillen¹

¹Tecnologico de Monterrey, Mexico; ²Universidad Panamericana, Mexico

0694 A Novel Boost Converter Topology with Non-Pulsating Input and Output Current

Enrique Garza-Arias¹, Julio C. Rosas-Caro², Jesus E. Valdez-Resendiz¹, Jonathan C. Mayo-Maldonado¹, Gerardo Escobar-Valderrama¹, Carlos Villarreal-Hernandez¹, Leonardo J. Valdivia² ¹Tecnologico de Monterrey, Mexico; ²Universidad Panamericana, Mexico

0889 A High Efficiency and High Power SiC DC-DC Converter based on Interleaved-Boost and Full-Bridge LLC Integration for PV Applications

Shilei Lu¹, Kai Sun¹, Guoen Cao², Zheyuan Yi¹, Hanyu Liu¹, Yongdong Li¹ ¹Tsinghua University, China; ²Chinese Academy of Sciences, China

1118 | Analysis of an LCL-Isolated Modular Multilevel DC-DC Converter

Mahmoud Mehrabankhomartash, Xiangyu Han, Maryam Saeedifard, Deepak Divan *Georgia Institute of Technology, United States*

12:10PM-12:40PM

Virtual 4

Wednesday, October 14

12:10PM-12:40PM

S36 | Utility Applications of Power Electronics

Chairs: Nathan Weise, Necmi Altin

0354 | Modular Smart Transformer Topology for the Interconnection of Multiple Isolated AC and DC Grids

Johannes Kuprat, Markus Andresen, Vivek Raveendran, Marco Liserre *Kiel University, Germany*

1288 An Active Damping Control Strategy for a Multi-Cell AC-DC Solid State Transformer

Vishnu Mahadeva Iyer¹, Srinivas Gulur², Subhashish Bhattacharya² ¹GE Global Research, United States; ²North Carolina State University, United States

0255 | Coordinated Power Control Strategy of Modified Electrical Energy Router

Zixun Pan¹, Xiaofeng Yang¹, Zejie Li¹, Haibo Tao¹, Yanbin Zhang¹, Pavel Kobrle² ¹Beijing Jiaotong University, China; ²Czech Technical University, Czech Republic

0743 A Hybrid Voltage Regulator with Arcless Tap Change and Stepless Voltage Regulation Functions

Yafeng Wang, Tiefu Zhao University of North Carolina-Charlotte, United States

1315 | 500kVA Hybrid Solid State Transformer (HSST): Architecture, Functionality and Control

Qingyun Huang, Sanjay Rajendran, Soumik Sen, Zhicheng Guo, Liqi Zhang, Alex Q. Huang The University of Texas at Austin, United States

1387 | A Control Method of Hybrid Transformer Enabled Harmonic Isolator for Sensitive Clustered Harmonic Loads

Yos Prabowo¹, Vishnu Mahadeva Iyer², Subhashish Bhattacharya¹, Eddy Aeloiza³ ¹North Carolina State University, United States; ²GE Global Research, United States; ³ABB Inc., United States

1447 | High Power DC-DC Converter based on Parallel Hybrid Converter

Mohd Shadab Ansari¹, Ibhan Chand Rath¹, Siba Kumar Patro², Anshuman Shukla¹ ¹Indian Institute of Technology Bombay, India; ²Visvesvaraya National Institute of Technology, India

1446 A Control Technique to Eliminate dc Harmonics in Series-Connected Hybrid VSCs for HVDC Applications

Siba Kumar Patro¹, Anshuman Shukla² ¹Visvesvaraya National Institute of Technology, India; {2]Indian Institute of Technology Bombay, India

1057 | Virtual Friction for Oscillation Damping and Inertia Sharing from Multi-Terminal VSC-HVDC Grids

Alberto Rodríguez-Cabero¹, Javier Roldán-Pérez¹, Milan Prodanovic¹, Jon Are Suul², Salvatore D'arco² ¹IMDEA Energy Institute, Spain; ²SINTEF Energy Research, Norway

Virtual 1

Thursday, October 15

9:00AM-9:30AM

S37 | Reliability, EMI and Fault Tolerance in Electric Drives

Chairs: Antonio J. Marques Cardoso, Thomas Wolbank

0357 | Fault-Tolerant Control of Five-Phase Open-End Induction motor Drive with a Floating Capacitor

Xiangwen Sun, Zicheng Liu, Dong Jiang, An Li Huazhong University of Science and Technology, China

0813 | Time-Frequency Domain based Diagnostics of Stator Faults in Motors Drives via Dispersal Magnetic Field

Hassan H. Eldeeb¹, Haisen Zhao^{1,2}, Osama A. Mohammed¹ ¹Florida International University, United States; ²North China Electric Power University, China

0196 Universal SVPWM Fault-Tolerant Control of a New Five-Phase Flux-Intensifying Fault-Tolerant Interior-Permanent-Magnet Motor

Li Zhang, Xaiyong Zhu, Deyang Fan Jiangsu University, China

0712 | Fully Integrated Fault-Tolerance for PMSMs in Aviation Applications

Alastair P. Thurlbeck, Yue Cao Oregon State University, United States

1145 Analysis and Evaluation of Active/Hybrid/Passive DV/DT-Filter Concepts for Next Generation SiC-Based Variable Speed Drive Inverter Systems

M. Haider¹, M. Guacci¹, D. Bortis¹, J.W. Kolar¹, Y. Ono² ¹*ETH Zürich, Switzerland;*²*Nabtesco R&D Center, Japan*

1226 Automatic Generation of Gate Driving Vectors for Digital Gate Drivers to Satisfy EMI Regulations

Ryuzo Morikawa, Toru Sai, Katsuhiro Hata, Makoto Takamiya The University of Tokyo, Japan

1310 | A Novel Multi-Physical Coupled Model of Press-Pack IGBT in Steady Conducting State Considering Fretting Wear

Cao Zhan¹, Lingyu Zhu¹, Jiangang Dai¹, Ting Hou² 'Xi'an Jiaotong University, China; ²State Key Laboratory of HVDC Transmission Technology, China

1581 | SiC based Interleaved VSI Fed Transverse Flux Machine Drive for High Efficiency, Low EMI Noise and High Power Density Applications

Salman K. Harasis, Md Ehsanul Haque, Anik Chowdhury, Yilmaz Sozer The University of Akron, United States

Thursday, October 15

9:00AM-9:30AM

S38 | Multilevel Converters 3

Chairs: Sheng Zheng, Alinaghi Marzoughi

0997 | Design and Optimization of a Highly Integrated Modular Filter Building Block for Three-Level Grid Tied Converters

Ripun Phukan¹, Sungjae Ohn¹, Dong Dong¹, Rolando Burgos¹, Gopal Mondal², Sebastian Nielebock² ¹Virginia Polytechnic Institute and State University, United States; ²Siemens Corporate Research, Germany

0093 | A Parallel Control Strategy for Power Mismatch Elimination of Photovoltaic Grid-Connected Cascaded H-Bridge Multilevel Inverter

Xicai Pan, Shangzhi Pan, Jinwu Gong, Xiaoming Zha Wuhan University, China

0721 | Single-Phase Cascaded Multilevel Rectifier using Totem-Pole Bridgeless Cells

Ailton do Egito Dutra, Montiê Alves Vitorino, Alan Santana Felinto, Maurício Beltrão de Rossiter Corrêa Federal University of Campina Grande, Brazil

0079 A New Reduced Switch-Count Configuration for Regenerative Cascaded H-Bridge Converter

Sarah Badawi¹, Mehdi Narimani¹, Zhongyuan Cheng², Navid Reza Zargari² ¹McMaster University, Canada; ²Rockwell Automation Canada, Canada

0692 | Current Harmonic Reduction in DC-Link Capacitors of a Regenerative Cascaded H-Bridge Converter

Shaoyi Yuan, Mehdi Narimani McMaster University, Canada

1584 | A New Model-Based Fault Detection and Localization Scheme for Cascaded H-Bridge Multilevel Converter

Naga Brahmendra Yadav Gorla, Sandeep Kolluri, Merlin Chai, Sanjib Kumar Panda National University of Singapore, Singapore

Thursday, October 15

9:00AM-9:30AM

S39 | Grid Interactive Converter Control

Chairs: Gab-Su Seo, Xiongfei Wang

0242 CCS-MPC with Long Predictive Horizon for Grid-Connected Current Source Converter

Cheng Xue, Li Ding, Yunwei (Ryan) Li University of Alberta, Canada

1304 | Decoupled Active and Reactive Power Control without PLL Requirement for Differential Buck Converter

Ahmad Khan^{1,2}, Mohsen Hosseinzadehtaher^{1,2}, Mitchell Easley¹, Mohammad B. Shadmand^{1,2}, Haitham Abu-Rub³ ¹Kansas State University, United States; ²University of Illinois at Chicago, United States; ³Texas A&M University at Qatar, Qatar

1281 | Control Technique for High-Frequency Soft-Switching Three-Phase Inverter under Grid Fault Condition

Gibong Son, Zhengrong Huang, Qiang Li, Fred C. Lee Virginia Polytechnic Institute and State University, United States

0994 Virtual Admittance PLL Structure for Grid Forming Power Converters in Microgrids

Andres Tarraso¹, Jose Ignacio Candela¹, Ngoc Bao Lai², Gregory N. Baltas², Pedro Rodriguez² ¹Universitat Politecnica de Catalunya, Spain; ²Universidad Loyola Andalucia, Spain

0709 | A Single Feedback Current Control Design Technique for LCL Grid-Connected Inverters based on Pole Allocation in the Frequency Domain

Uziel Santos de Araújo¹, João Raphael Souza Martins², André Pires Nóbrega Tahim¹, Darlan Alexandria Fernandes³, José Renes Pinheiro¹, Fabiano Fragoso Costa¹ ¹Federal University of Bahia, Brazil; ²Federal University of Campina Grande, Brazil; ³Federal University of Paraíba, Brazil

1240 | Synchronverter-Based Control of Multi-Port Autonomous Reconfigurable Solar Plants (MARS)

Phani R.V. Marthi¹, Suman Debnath¹, Mariesa L. Crow² ¹Oak Ridge National Laboratory, United States; ²Missouri University of Science and Technology, United States

1222 Adaptive-Passive Virtual Inertia Control based on Energy Balance between a Synchronous Generator and a Three-Phase Inverter

Sara Yazdani, Mehdi Ferdowsi, Pourya Shamsi Missouri University of Science and Technology, United States

0675 | Dynamic Discontinuous PWM for Grid-Tied Inverter Applications

Zeljko Jankovic¹, Puneeth Murthy¹, Lixiang Wei¹, Adel Nasiri² ¹Rockwell Automation, United States; ²University of Wisconsin-Milwaukee, United States

1289 Optimal Design of Grid Interactive Inverters based on Harmonic State Space Modeling

Dongsen Sun, Xiaonan Lu, Liang Du Temple University, United States

Virtual 4

Thursday, October 15

9:00AM-9:30AM

S40 | Tools and Techniques for the Optimization and Protection of Power Electronic Systems

Chairs: Brandon Grainger, Shajjad Chowdhury

1243 | Electronic Design Automation (EDA) Tools and Considerations for Electro-Thermo-Mechanical Co-Design of High Voltage Power Modules

Tristan M. Evans, Shilpi Mukherjee, Yarui Peng, H. Alan Mantooth *University of Arkansas, United States*

1187 | High-Frequency Transformer Design with High-Voltage Insulation for Modular Power Conversion from Medium-Voltage AC to 400-V DC

Zheqing Li, Yi-Hsun Hsieh, Qiang Li, Fred C. Lee, Mohamed H. Ahmed Virginia Polytechnic Institute and State University, United States

0549 | Relative Entropy based Lithium-Ion Battery Pack Short Circuit Detection for Electric Vehicle

Zhenyu Sun¹, Zhenpo Wang¹, Peng Liu¹, Zhaosheng Zhang¹, Shuo Wang¹, David G. Dorrell² ¹Beijing Institute of Technology, China; ²University of Witwatersrand, South Africa

0992 | Q-Learning-Based Smart Selective Harmonic Current Mitigation-PWM (S²HCM-PWM) for Grid-Connected Converters

Amirhossein Moeini¹, Morteza Dabbaghjamanesh², Jonathan W. Kimball¹ ¹Missouri University of Science and Technology, United States; ²The University of Texas at Dallas, United States

1576 | High Frequency Signal Injection Method for Online Condition Monitoring of Electric Machines

Okan Boler, Senol Sancar, Yilmaz Sozer, J. Alexis De Abreu-Garcia The University of Akron, United States

1605 | A Frequency-Domain Method for Stray Parameters Extraction in Arbitrary Section of Laminated Busbars

Mingyang Wang, Guofeng Wu, Sideng Hu, Xiangning He *Zhejiang University, China*

1134 A Synchronous Distributed Control and Communication Network for SiC-Based Scalable Impedance Measurement Unit

Yu Rong¹, Jun Wang¹, Zhiyu Shen², Sizhan Zhou¹, Bo Wen¹, Dushan Boroyevich¹ ¹Virginia Polytechnic Institute and State University, United States; ²Delta Electronics (America) LTD., United States

0559 | Partial Discharge Signal Propagation in Three-Phase Gas-Insulated Switchgear: CIGRE Recommendations-Based Analysis

Ahmad Darwish¹, Shady S. Refaat², Haitham Abu-Rub², Hamid A. Toliyat¹ ¹Texas A&M University-College Station, United States; ²Texas A&M University-Doha, Qatar

Thursday, October 15

9:35AM-10:05AM

S41 | Predictive and Sensorless Control of Electric Drives

Chairs: David Diaz Reigosa, Francisco Paz

0580 | Saliency-Based Speed Sensorless Control of Single-Inverter Dual Induction Machines using Reduced Amount of Current Sensors

Eduardo Rodriguez Montero¹, Markus Vogelsberger², Martin Bazant³, Thomas Wolbank¹ ¹Vienna University of Technology, Austria; ²Bombardier Transportation Austria GmbH, Austria; ³Bombardier Transportation Switzerland Ltd., Switzerland

0476 | Improved Sensorless Control Method for Permanent Magnet Synchronous Machines Considering Resistance Asymmetry and Temperature Variation

Tianyi Liu¹, Ziqiang Zhu¹, Zhanyuan Wu², David Stone¹, Martin Foster¹ ¹University of Sheffield, United Kingdom; ²Siemens Gamesa Renewable Energy, United Kingdom

0339 Sensorless Control of Wound Rotor Synchronous Motors based on Rotor High-Frequency Signal Injection

David Reigosa, Ye Gu Kang, María Martínez, Daniel Fernández, J.M. Guerrero, Fernando Briz University of Oviedo, Spain

1595 | Realization of Signal-Injection Sensorless Control of SMPMSM by Modification of Current Trajectory

Yoon-Ro Lee, Yong-Cheol Kwon, Seung-Ki Sul Seoul National University, Korea

0985 | Position-Sensorless Control Design for Safety-Relevant Steer-by-Wire Applications

Kilian Rehorik¹, Abdelrahmen Elsman², Benjamin Grothmann³, Nikolaus Reiland¹, Dieter Gerling¹, Fabio Giulii Capponi² ¹Bundeswehr University Munich, Germany; ²University of Rome La Sapienza, Italy; ³Audi AG, Germany

0958 | Mitigating DV/DT Stress Caused by the Line-Line Voltage Polarity Reversal in Model Predictive Controlled VSI Drives

Ameer Janabi, Shukai Wang, Jacob Buys, Bingsen Wang *Michigan State University, United States*

0505 | A Robust Predictive Current Control of Induction Motor Drives

Xing Wang¹, Yongchang Zhang¹, Haitao Yang¹, Boyue Zhang¹, Jose Rodriguez² ¹North China University of Technology, China; ²Universidad Andres Bello, Chile

0957 One Improved Finite-Set Model Predictive Current Control with Nonlinear Speed Regulator for Linear Induction Motor based on Linear Metro

Mosaad M. Ali^{1,2}, Wei Xu¹, Mahmoud F. Elmorshedy^{1,3}, Yi Liu¹, Minghai Dong⁴ ¹Huazhong University of Science and Technology, China; ²Kafrelsheikh University, Egypt; ³Tanta University, Egypt; ⁴Foshan Golden Age Motor Technology Co., Ltd., China

0663 Data-Driven Predictive Current Control for Synchronous Motor Drives

Paolo Gherardo Carlet¹, Andrea Favato¹, Saverio Bolognani², Florian Dörfler² ¹University of Padova, Italy; ²ETH Zürich, Switzerland

Virtual 2

Thursday, October 15

9:35AM-10:05AM

S42 | Wireless Power Transfer in Transportation

Chairs: Burak Ozpineci, Salman Harasis

0508 An Inductive Power Transfer System using Soft-Switched AC/AC Active-Clamped Half-Bridge Converter with Predictive Dead-Beat Grid Current Control

Phuoc Sang Huynh, Deepak Ronanki, Sheldon S. Williamson Ontario Tech University, Canada

1439 | Multi-Pad Receivers for High Power Dynamic Wireless Power Transfer

Benny J. Varghese¹, Regan A. Zane¹, Abhilash Kamineni¹, Reza Tavakoli², Zeljko Pantic², Leo Liu³ ¹Utah State University, United States; ²North Carolina State University, United States; ³Toyota Research Institute North America, United States

1545 | Design of a 7.7 kW Three-Phase Wireless Charging System for Light Duty Vehicles based on Overlapping Windings

Samir Chowdhury, Md Tawhid Bin Tarek, Yilmaz Sozer *The University of Akron, United States*

1347 | Wireless Power Transfer System Integration with an On-Board Conductive Charger for Plug-In Electric Vehicles

Mohamed Elshaer¹, Chris Bell¹, Aqil Hamid¹, Jin Wang² ¹Ford Motor Co., United States; ²The Ohio State University, United States

0224 | Electromagnetic Shielding Design for 200 kW Stationary Wireless Charging of Light-Duty EV

Bo Zhang¹, Richard B. Carlson¹, Veda P. Galigekere², Omer C. Onar², Jason L. Pries² ¹Idaho National Laboratory, United States; ²Oak Ridge National Laboratory, United States

1354 Unfolder-Based Single-Stage AC-AC Conversion System for Wireless Charging Applications

Chakridhar Reddy Teeneti, Rees Hatch, Dorai Babu Yelaverthi, Abhilash Kamineni, Hongjie Wang, Regan Zane Utah State University, United States

1455 Comparative Analysis of DWPT Topologies and Regulation Schemes for Improved Controllability

Anindya Chitta Bagchi¹, Abhilash Kamineni¹, Regan Zane¹, Richard Carlson² ¹Utah State University, United States; ²Idaho National Laboratory, United States

1351 Zero-Crossing Current Detection for Modular and Robust Dynamic Wireless Power Transfer

Matthew Hansen, Abhilash Kamineni, Regan Zane Utah State University, United States

Thursday, October 15

9:35AM-10:05AM

S43 | DC-AC Single-Phase Converters

Chairs: Liuchen Chang, Pedro Rodriguez

0944 An Active Power Decoupling-integrated Four-Switch Quasi-Switched Boost Inverter

Pramit Nandi, Ravindranath Adda Indian Institute of Technology Guwahati, India

1106 | An n-Phase Interleaved Current Fed Switched Inverter

Sonam Acharya¹, Santanu Mishra¹, Arvind Tiwari² ¹Indian Institute of Technology Kanpur, India; ²GE Global Research, United States

1123 New Five-Level Double-Flying-Capacitor Inverter Fed by a Boost-Flyback Converter

Antonio Venancio de M. Filho¹, Edison Roberto C. da Silva^{1,2}, André Elias L. Costa¹ ¹Federal University of Campina Grande, Brazil; ²Federal University of Paraíba, Brazil

1320 | Efficiency Improvement with Off-Time Discrete Control for 1 MHz Operated Discontinuous Current Mode Grid-Tied Inverter

Cheng Huang, Jiantao Zhang, Tomoyuki Mannen, Takanori Isobe University of Tsukuba, Japan

1294 Model Predictive Control with Low Switching Frequency for Railway Power Compensator

Jeonghyeon Lee, Jehun Woo, Jongmin Jo, Hanju Cha Chungnam National University, Korea

0432 | Verification of Iron Loss Affected by Secondary Frequency in Multi-Core Transformer for Frequency Multiplying Circuit

Shogo Nishikawa¹, Koji Orikawa¹, Satoshi Ogasawara¹, Masatsugu Takemoto² ¹Hokkaido University, Japan; ²Okayama University, Japan

0173 A Resonant Current Regulator for Direct Electrical Heating of Subsea Pipelines

Anindya Ray, Kaushik Rajashekara University of Houston, United States

0826 | Dynamic Performance Improvement of Single-Phase DC-AC Converter with Non-Linear Digital Predictive Control

Shah Zaman¹, Yan Zhang¹, Liu Jinjun¹, Li Xinying¹, Nauman Ali Larik², Zhang Jinshui¹ *'Xi'an Jiaotong University, China*; ²South China University of Technology, China

Virtual 4

Thursday, October 15

9:35AM-10:05AM

S44 | Reliability, Diagnostics and Fault Analysis

Chairs: Huai Wang, Rongwu Zhu

0045 | Impact of Mission Profile Dynamics on Accuracy of Thermal Stress Modeling in PV Inverters

Ariya Sangwongwanich, Huai Wang, Frede Blaabjerg Aalborg University, Denmark

0304 | A Calculation Method of Analytical DC Fault Current in MMC-HVDC Grid including Current-Limiting Devices

Song Tang, Guanlong Jia, Chenghao Zhang, Min Chen Zhejiang University, China

0205 | A Simple Diagnosis Approach for Multiple IGBT Faults in Cascaded H-Bridge Multilevel Converters

Dong Xie, Xinglai Ge Southwest Jiaotong University, China

0775 Separation of Bond-Wire and Solder Layer Failure Modes in IGBT Power Modules

Wenzhao Liu¹, Dao Zhou¹, Michael Hartmann², Francesco lannuzzo¹, Frede Blaabjerg¹ ¹Aalborg University, Denmark; ²Schneider Electric Power Drives GmbH, Austria

1586 Case Temperature Monitoring-Based Online Condition Monitoring of SiC MOSFET Power Modules using a Radial Basis Function Network

Cameron Entzminger, Wei Qiao, Liyan Qu University of Nebraska-Lincoln, United States

0544 | Co-Optimization of Boost Converter Reliability and Volumetric Power Density using Genetic Algorithm

Lee Gill, Jason C. Neely, Lee J. Rashkin, Jack D. Flicker, Robert J. Kaplar Sandia National Laboratories, United States

0917 | Preserving Converter Lifetime by Active Thermal Boundary Control

Patrick T. Lewis¹, Brandon M. Grainger² ¹Hepburn and Sons, LLC, United States; ²University of Pittsburgh, United States

1103 Condition Monitoring of DC-Link Capacitors in Grid-Tied Solar Inverters using Data-Driven Techniques

Vahe Seferian¹, Ali Bazzi^{1,2}, Hazem Hajj¹ ¹American University of Beirut, Lebanon; ²University of Connecticut, United States

0210 An IGBT Open-Circuit Fault Diagnosis Method for Grid-Tied T-Type Three-Level Inverters

Zhan Li¹, Bohui Zhao¹, Xin Zhang², Hao Ma² ¹Nanyang Technological University, Singapore; ²Zhejiang University, China

Thursday, October 15

10:10AM-10:40AM

S45 | Multi-Phase Motor Drives

Chairs: Prerit Pramod, Mario Pulvirenti

0046 | Performance Evaluation and Improvement of Symmetrical Six-Phase Drives under Two Open Legs with Star and Hexagon Connections

Alejandro G. Yepes, Jesús Doval-Gandoy University of Vigo, Spain

0358 | A Generalized Carrier-Based PWM with Zero-Axis Voltage Elimination for Open-End Winding Motor Drive

An Li, Xiangwen Sun, Dong Jiang, Zicheng Liu Huazhong University of Science and Technology, China

1431 | Direct Instantaneous Torque Control of Five-Phase Segmented Switched Reluctance Motor with Bipolar Excitation for In-Wheel Electric Vehicles

Deepak Ronanki¹, Apparao Dekka¹, Parthiban Perumal², Abdul R. Beig³ ¹Lakehead University, Canada; ²National Institute of Technology Karnataka, India; ³Khalifa University, United Arab Emirates

0616 Active Disturbance Rejection Control of Synchronous Reluctance Motors

Angelo Accetta¹, Maurizio Cirrincione², Filippo D'Ippolito³, Marcello Pucci¹, Antonino Sferlazza³ ¹National Research Council of Italy, Italy; ²University of the South Pacific, Fiji; ³University of Palermo, Italy

0215 | Self-Commissioning of Synchronous Reluctance Motor Drives: Magnetic Model Identification with Online Adaptation

Anantaram Varatharajan, Gianmario Pellegrino, Eric Armando Politecnico di Torino, Italy

0424 | Minimum Loss Control of a Five-Phase Permanent Magnet Assisted Synchronous Reluctance Motor under Open Phase Fault

Akm Arafat¹, Md. Khurshedul Islam², Kazi Nishat Tasnim², Seungdeog Choi² ¹Commins Inc., United States; ²Mississippi State University, United States

1591 Dynamic Overmodulation for Improved Current Regulation of PMSM

Jiwon Yoo, Seung-Ki Sul Seoul National University, Korea

Thursday, October 15

10:10AM-10:40AM

S46 | Control and Stability of Power Converters

Chairs: Ke Ma, Mohammad B Shadmand

0433 Asymmetric Parameters Design for Bidirectional Resonant CLLC Battery Charger

Jun Min, Martin Ordonez The University of British Columbia, Canada

0926 | Primary Frequency Control in Islanded Microgrids using Solid-State Transformers as Virtual Synchronous Machines

Javad Khodabakhsh, Gerry Moschopoulos Western University, Canada

0706 | Design and Optimization of AC-Side Filter using Coupled Inductor for Single-Phase Full-Bridge Inverter

Zhe Yang¹, Paige Williford¹, Fred Wang¹, Sandeep Bala², Jing Xu² ¹The University of Tennessee, United States; ²ABB Corporate Research, United States

0749 CCM vs. CRM Design Optimization of a Boost-Derived Parallel Active Power Decoupler for Microinverter Applications

Yidi Shen, Michael D'Antonio, Shiladri Chakraborty, Alireza Khaligh University of Maryland, United States

0329 Using Deterministic Optimization to Compare Interleaved and Coupled Inverters: Results and Experimental Verification

Adrien Voldoire¹, Jean-Luc Schanen¹, Jean-Paul Ferrieux¹, Benoit Sarrazin¹, Cyrille Gautier², Marwan Ali² ¹University Grenoble Alpes, France; ²Safran Tech, France

0406 A Hybrid Multi-Loop Current Control of the Grid-Connected Converter with LCL Filter

Yong-Yao Shen, Meng-Jiang Tsai, Jiuyang Zhou, Po-Tai Cheng National Tsing-Hua University, Taiwan

0599 A Trigonometric Solution to the Problem of Overmodulation in Five-Phase Inverters

Luca Vancini, Michele Mengoni, Giacomo Sala, Gabriele Rizzoli, Luca Zarri, Angelo Tani University of Bologna, Italy

Virtual 3

Thursday, October 15

10:10AM-10:40AM

S47 | High Frequency DC-DC Converters

Chairs: Dong Cao, Emanuel Serban

0707 | Current Sharing Analysis of Interleaved LCLC Resonant Converter

Mojtaba Forouzesh, Bo Sheng, Yang Chen, Yan-Fei Liu *Queen's University, Canada*

0009 | Optimal Design of GaN and PCB-Winding based Transformer-Inductor-Integrated Magnetics for CLL Resonant Converter

Yue Liu, Hongfei Wu, Yu Tai, Jun Zou, Yihang Jia Nanjing University of Aeronautics and Astronautics, China

1085 An Accurate Voltage Gain Model Considering Diode Effect for LLC Resonant Converter in Wide Gain Range Applications

Hao Wen¹, Dong Jiao¹, Jih-Sheng Lai¹, Johan Strydom², Lanhua Zhang² ¹Virginia Polytechnic Institute and State University, United States; ²Texas Instruments Inc., United States

0244 | A 48V-to-1V Buck-Assisted Active-Clamp Forward Converter with Reduced Voltage Stress for Datacenter Applications

Lixiong Du, D. Brian Ma The University of Texas-Dallas, United States

0355 Analysis and Design of Active Snubber of a Step-Up Phase Shifted Full Bridge DC-DC Converter Considering Parasitics

Manmohan Mahapatra, Anirban Pal, Kaushik Basu Indian Institute of Science, India

1380 | A 27.12-MHz 10-kV Power Amplifier for Compact Particle Accelerators Utilizing an Optimized Matching Network

Sreyam Sinha¹, Yuetao Hou¹, Di Ni¹, Qing Ji², Arun Persaud², Thomas Schenkel², Amit Lal¹, Khurram K. Afridi¹ ¹Cornell University, United States; ²Lawrence Berkeley National Laboratory, United States

1273 A 50-MHz Multi-kV Power Amplifier for Ion-Beam Accelerator Utilizing an Optimized Toroidal Inductor

Yuetao Hou¹, Sreyam Sinha¹, Di Ni¹, Qing Ji², Arun Persaud², Thomas Schenkel², Amit Lal¹, Khurram K. Afridi¹ ¹Cornell University, United States; ²Lawrence Berkeley National Laboratory, United States

1169 | LLC Resonant Converter using Pre-Charged Capacitor for High Input Voltage – High PAPR Envelope Tracking

Yu Yao, Harish S. Krishnamoorthy University of Houston, United States

0211 | Spread Spectrum based Power Line Communication and EM Noise Reduction Technique for Bidirectional HB CLLC Resonant Converter

Hwa-Pyeong Park¹, Mina Kim², Jongbok Baek¹, Moses Kang¹, Jee-Hoon Jung² ¹Korea Institute of Energy Research, Korea; ²Ulsan National Institute of Science and Technology, Korea

Virtual 4

Thursday, October 15

10:10AM-10:40AM

S48 | Wireless Power Transfer

Chairs: Chi-Kwan Lee, Yi Tang

1371 | Multiple-Transmitter Achieving Load-Independent Transmitter Current and Compensation of Cross-Interference Among Transmitters for Wide Charging Area Wireless Power Transfer Systems

Kodai Matsuura¹, Masataka Ishihara¹, Akihiro Konishi¹, Kazuhiro Umetani², Eiji Hiraki¹ ¹Okayama University, Japan; ²Tohoku University, Japan

1264 Challenges and Solutions to Passive Rectification in Multi-MHz Frequency Capacitive Wireless Power Transfer Systems for Electric Vehicle Charging

Brandon Regensburger, Khurram K. Afridi Cornell University, United States

0809 A High Frequency Wireless Power Transfer System for Electric Vehicle Charging using Multi-Layer Non-Uniform Self-Resonant Coil at MHz

Ruiyang Qin, Jie Li, Daniel Costinett The University of Tennessee-Knoxville, United States

0034 | A Direct AC-AC Single-Inductor Multiple-Output (SIMO) Converter for Multi-Coil Wireless Power Transfer Applications

Jiayang Wu, Albert T.L.Lee, Siew-Chong Tan, S.Y. (Ron) Hui The University of Hong Kong, Hong Kong

1291 Active Rectifier Design and Synchronization Control for 6.78 MHz Wireless Power Transfer

Peter Pham, Spencer Cochran, Daniel J. Costinett, Leon M. Tolbert The University of Tennessee, United States

0268 A Novel Method to Design High Efficiency Transmission Line Class E Power Amplifier

Dongqin Mao, Ke Jin, Xirui Zhu Nanjing University of Aeronautics and Astronautics, China

0568 A New Control Method of Semi-Bridgeless Active Rectifier for Wireless Power Transfer System based on the Double-Sided LCC Compensation

Min Wu, Yongbin Jiang, Longyang Yu, Chengzi Yang, Mengyu Zhu, Laili Wang, Wenjie Chen, Xu Yang Xi'an Jiaotong University, China

0679 | A Dual Phase Shedding Method for the Improvement of Efficiency and Reduction of Regulating Requirements in Series-Series Inductive Power Transfer

Shuxin Chen¹, Yang Chen², Hongchang Li³, Yiming Zhang¹, Xin Li¹, Yi Tang¹ ¹Nanyang Technological University, Singapore; ²Southwest Jiaotong University, China; ³Xinjiang University, China

0728 Optically-Coupled Switched-Mode Converter for Smartphones Wireless Charging Application

Weiyang Zhou¹, Mengqi Wang¹, Qunfang Wu¹, Guanliang Liu¹, Wencong Su¹, Can Huang² ¹University of Michigan-Dearborn, United States; ²Lawrence Livermore National Laboratory, United States

0287 | Data-Enabled Estimation and Feedback Control Method Utilizing Online Magnetic Positioning System for Wireless Power Transfer Systems

Zeqian Cheng, Hao Chen, Zhongnan Qian, Jiande Wu, Xiangning He Zhejiang University, China

1348 Control of Output Power in Primary Side LCC and Secondary Series Tuned Wireless Power Transfer System without Secondary Side Sensors

Subhajyoti Mukherjee, Veda P. Galigekere, Omer Onar, Burak Ozpineci, Jason Pries, Gui-Jia Su Oak Ridge National Laboratory, United States

1328 | Design of Auxiliary Circuit Elements for Achieving Zero Voltage Switching in a Wireless Power Transfer System

Tarak Saha¹, Subhajyoti Mukherjee², Veda Prakash Galigekere², Omer C. Onar² ¹Utah State University, United States; ²Oak Ridge National Laboratory, United States

2020 IEEE ENERGY CONVERSION CONGRESS & EXPOSITION®

Virtual 1

Thursday, October 15

11:00AM-11:30AM

S49 | Noise, Vibration and Reliability in Electric Machines

Chairs: Jose Antonino-Daviu, Shanelle Foster

1009 | Investigation of the Effects of Skew of an Integrated Flux-Switching Motor-Compressor

Hao Ding, Leyue Zhang, Ahmed Hembel, Bulent Sarlioglu University of Wisconsin-Madison, United States

1536 | Impact of Damping Material on Vibration Isolation in Switched Reluctance Machines

Lavanya Vadamodala¹, Anik Chowdhury¹, Md. Tawhid Bin Tarek¹, Shuvajit Das¹, Abdul W. Bandarkar¹, Yilmaz Sozer¹, Fernando Venegas², David Colavincenzo² ¹The University of Akron, United States; ²Bendix Commercial Vehicle Systems, United States

1532 | Analysis of Radial Force Ripple with Sensor Errors and its Effect in NVH Performance for SRMs

Omer Gundogmus, Anik Chowdhury, Abdul Wahab Bandarkar, Lavanya Vadamodala, Md Ehsanul Haque, Yilmaz Sozer The University of Akron, United States

0121 Vibrations and Acoustic Noise Analyses of Modular SPM Machines

Guang-Jin Li¹, Xiao-Bin Liang², Zi-Qiang Zhu¹, Javier Ojeda³, Mohamed Gabsi³ ¹The University of Sheffield, United Kingdom; ²State Grid Sichuan Electric Power Institute, China; ³École Normale Supérieure Paris-Saclay, France

1535 Current Profile Optimization Method for Simultaneous DC-Link Current Ripple and Acoustic Noise Minimization in Switched Reluctance Machines

Omer Gundogmus¹, Md Ehsanul Haque¹, Lavanya Vadamodala¹, Abdul Wahab Bandarkar¹, Anik Chowdhury¹, Fernando Venegas², David Colavincenzo² ¹The University of Akron, United States; ²Bendix Commercial Vehicle Systems, United States

0455 | Comparison of Frequency Responses of the Motors with Bearing Voltage Reduction Structures

Jun-Hyuk Im, Woo-Jong Kim, Jin Hur Incheon National University, Korea

1468 | Evaluation of Bearing Voltage Reduction in Electric Machines by using Insulated Shaft and Bearings

Peng Han¹, Greg Heins², Dean Patterson², Mark Thiele², Dan M. Ionel¹ ¹University of Kentucky, United States; ²Regal Beloit Corp., Australia

1471 Combined Numerical and Experimental Determination of Ball Bearing Capacitances for Bearing Current Prediction

Peng Han¹, Greg Heins², Dean Patterson², Mark Thiele², Dan M. Ionel¹ ¹University of Kentucky, United States; ²Regal Beloit Corp., Australia

Thursday, October 15

11:00AM-11:30AM

S50 | Battery Management Systems

Chairs: Jaber Abu Qahouq, Sheldon Williamson

1325 | Unbiased Model Identification and State of Energy Estimation of Lithium-Ion Battery

Zhongbao Wei, Hongwen He, Jian Hu Beijing Institute of Technology, China

0418 | Data-Driven Nonparametric Li-Ion Battery Ageing Model Aiming at Learning from Real **Operation Data: Holistic Validation with EV Driving Profiles**

Mattin Lucu¹, Markel Azkue¹, Haritza Camblong², Egoitz Martinez-Laserna¹ ¹Ikerlan Technology Research Centre, Spain; ²University of the Basque Country, Spain

0139 | Li-Ion Battery State of Charge Estimation of Multi-Type Working Conditions using a Segmented Multiple Independent Forgetting Factors Recursive Least Squares Method

Haolu Liu, Junhua Wang, Qisheng Liu, Shigi Liu, Jia Tang Wuhan University, China

0847 | Combined SOC and SOE Estimation of Lithium-Ion Battery for Electric Vehicle Applications

Prashant Shrivastava, Tey Kok Soon, Mohd Yamani Idna Idris, Saad Mekhilef University Malaya, Malaysia

1002 Wireless Smart Battery Management System for Electric Vehicles

Xinrong Huang¹, Anirudh Budnar Acharya¹, Jinhao Meng², Xin Sui¹, Daniel-Ioan Stroe¹, Remus Teodorescu¹ ¹Aalborg University, Denmark; ²Sichuan University, China

0409 | Comparison of Lithium-Ion Battery Pack Models based on Test Data from Idaho and Argonne National Laboratories

Kevin Davis¹, John G. Hayes² ¹Cork Institute of Technology, Ireland; ²University College Cork, Ireland

1010 | The Effect of Pulsed Current on the Performance of Lithium-Ion Batteries

Xinrong Huang¹, Yuanyuan Li², Jinhao Meng³, Xin Sui¹, Remus Teodorescu¹, Daniel-Ioan Stroe¹ ¹Aalborg University, Denmark; ²University of Electronic Science and Technology, China; ³Sichuan University, China

1364 | Bidirectional AC/DC Converter using GaN HEMT based Non-Isolated DAB for Battery Emulation

Sanchit Mishra, T. Sreekanth, Ned Mohan University of Minnesota, United States

Thursday, October 15

11:00AM-11:30AM

S51 | Power Converter Control

Chairs: Frede Blaabjerg, Marco Liserre

0620 | Global Optimization for Dual Active Bridge Converters to Minimize RMS Current

Ruoyu Li, Linghui Meng, Rongxin Chen, Han Yan, Zeliang Shu Southwest Jiaotong University, China

1322 | Three-Phase-Four-Wire Three-Level Inverter with Neutral Inductor and Neutral Module for Saving AC-Filter-Inductances and DC-Link-Capacitances

Li Zhang, Donghan Shi, Wentao Jiang, Tianbo Yang, Chi Jin, Wai Kuan Loh, Yi Tang Nanyang Technological University, Singapore

1363 | Systematic Finite-Control-Set Model Predictive Control Design with Unified Model for Isomorphic and Dual Power Converters

Cheng Xue, Yuzhuo Li, Yunwei Li University of Alberta, Canada

1561 Optimized Cascaded Controller Design for a 10 kW/100 kHz Large Signal Bandwidth AC Power Source

Florian Krismer, Varsha N. Behrunani, Pascal S. Niklaus, Johann W. Kolar ETH Zürich, Switzerland

1612 | Inverter Nonlinearity Compensation of Discontinuous PWM Considering Voltage Drop of Power Semiconductor and Dead Time Effect

Joon-Hee Lee, Seung-Ki Sul Seoul National University, Korea

0861 Design of Harmonic Tolerant Mock-Up-Load for Distribution System Testbed

Hitesh Kumar, Santanu K. Mishra, Mandeep Singh Rana Indian Institute of Technology Kanpur, India

0133 | PI Controller Tuning Optimization for Grid-Connected VSC using Space Mapping

Wesam Taha, Mohamed Bakr, Ali Emadi McMaster University, Canada

0219 | Subsynchronous Resonance Analysis in Multi-Bus Multi-VSC Power System based on Two-Port Network Modeling Method

Shih-Feng Chou, Xiongfei Wang, Frede Blaabjerg Aalbora University, Denmark

1303 Design of Control Architecture for Stacked Low-Inertia Converters with Fast Dynamic Control

Xiangyu Han, Liran Zheng, Zheng An, Rajendra Prasad Kandula, Maryam Saeedifard *Georgia Institute of Technology, United States*

Thursday, October 15

11:00AM-11:30AM

S52 | Multilevel Converters 4

Chairs: John Shen, Hui Li

0789 Optimized Circulating Current Control Method based on Proportional Resonant and Proportional Integral Controllers for Modular Multi-Level Converter Applications

Semih Isik, Mohammed Alharbi, Subhashish Bhattacharya North Carolina State University, United States

1449 | Modeling of MMC based High Power DC-DC Converter Controlled using Trapezoidal Modulation

Mohd Shadab Ansari, Anshuman Shukla, Himanshu J. Bahirat Indian Institute of Technology Bombay, India

0321 Computationally Efficient Optimization Method for Model Predictive Pulse Pattern Control of Modular Multilevel Converters

Wei Tian, Yuebin Pang, Xiaonan Gao, Qifan Yang, Ralph Kennel Technical University of Munich, Germany

0625 | A Level-Increased MMC Topology and Modulation Strategy in DC Distribution Grids

Jianye Tao, Chen Wang, Yi Wang, Tong Xu North China Electric Power University, China

0529 | A New High-Frequency Multilevel Boost Power Factor Correction Approach with GaN Semiconductors

Kevin C. Hodge, Erick I. Pool-Mazun, Jorge Ramos-Ruiz, Prasad Enjeti *Texas A&M University, United States*

0668 | Flying Capacitor Voltages Estimation in Flying Capacitor Multilevel DC-DC Converters based on Peak Inductor Current Detection and Output Voltage Measurement

Hongxiang Chen, Sai Tang, Zhong Zeng, Jun Wang Hunan University, China

0681 A Simplified Model Predictive Control Strategy for a Nine-Level Hybrid Multilevel Converter

Yufei Li^{1,2}, Fei Diao², Yue Zhao² ¹Northwestern Polytechnical University-Xi'an, China; ²University of Arkansas, United States

0420 | A Five-Level Flying-DC-Source Multilevel Inverter with Self-Regulated Voltages and Boosting Capability

Antonio Venancio de M. Filho¹, André Elias L. da Costa¹, Edison Roberto C. da Silva^{1,2}, Cursino Brandão Jacobina¹, Nady Rocha²

¹Federal University of Campina Grande, Brazil; ²Federal University of Paraíba, Brazil

Virtual 1

Thursday, October 15

11:35AM-12:05PM

S53 | Design and Control of Electric Drives

Chairs: Jul-Ki Seok, Kevin Lee

0386 Analysis and Design of Spatial Six-Step Controllers for Permanent Magnet Synchronous Machines

Marc S. Petit¹, Hao Zeng², Bulent Sarlioglu² ¹*Miller Electric Manufacturing, LLC, United States;* ²*University of Wisconsin-Madison, United States*

1569 NVH Performance of Direct Flux Controlled Switched Reluctance Machine

Okan Boler, Omer Gundogmus, Abdul Wahab Bandarkar, Yilmaz Sozer The University of Akron, United States

1116 Deadbeat Control for AC Drive Systems with Optimal Dynamic Performance

Wei Tian¹, Qifan Yang¹, Xinyue Li^{1,2}, Xiaonan Gao¹, Xiao Chen¹, Ralph Kennel¹ ¹Technical University of Munich, Germany; ²Bosch Rexroth AG, Germany

0610 | Design of a SiC-Based Switched CCM/TCM Inverter for High-Speed Machine Drive with Low PWM-Induced Current Ripple

Yunlei Jiang, Yanfeng Shen, Luke Shillaber, Teng Long University of Cambridge, United Kingdom

1332 Optimal Super-Twisting Sliding-Mode Control using Adaptive Dynamic Programming for Uncertain Linear-Stage Considering PMSM Servo Drive Dynamics

Fayez F.M. El-Sousy¹, Mahmoud M. Amin², Ghada A. Abdel Aziz³, Ahmed Al-Durra⁴, Osama A. Mohammed⁵ ¹Prince Sattam bin Abdulaziz University, Saudi Arabia; ²Manhattan College, United States; ³Electronics Research Institute, Egypt; ⁴Khalifa University, United Arab Emirates; {5}Florida International University, United States

1276 | Power Converter Topology and Control Strategy for Novel Two-Phase DC-Biased Vernier Reluctance Machine

Shaofeng Jia, Binke Li, Xiaozhuang Dong, Deliang Liang, Jinjun Liu Xi'an Jiaotong University, China

0474 | Auto Tuning Method to Identify Motor Stator and Rotor Parameter in Field-Orientation-Controlled Induction Motor

Masaki Nagataki¹, Keiichiro Kondo¹, Osamu Yamazaki², Kazuaki Yuki², Yosuke Nakazawa² ¹Waseda University, Japan; ²Toshiba Infrastructure Systems and Solutions Corp., Japan

1290 Winding Inductance Estimations in Air-Cored Resonant Induction Machines

Zhao Jin¹, Matteo F. Iacchetti¹, Alexander C. Smith¹, Rajesh P. Deodhar², Yoshiyuki Komi³, Chiaki Umemura³ ¹The University of Manchester, United Kingdom; ²IMRA Europe S.A.S. UK Research Centre, United Kingdom; ³Aisin Seiki Co., Ltd., Japan

0360 | A Non-Invasive Dual-EKF-Based Rotor Temperature Estimation Technique for Permanent Magnet Machines

Tianze Meng, Pinjia Zhang Tsinghua University, China

1365 On-Line Stator Resistance Estimation of Vector-Controlled Synchronous Reluctance Motors using Inductance Information

Shu Yamamoto¹, Hideaki Hirahara¹, Ryotaro Eto² ¹Polytechnic University, Japan; ²Wakayama Polytechnic Center, Japan

1172 Accurate Capacitance Calculation of Multi-Layer Foil Windings in a Medium/High-Frequency High-Power Transformer

Annoy Kumar Das, Baylon G. Fernandes Indian Institute of Technology Bombay, India

Thursday, October 15

11:35AM-12:05PM

S54 | Power Converter EMI

Chairs: David Perreault, Bilal Akin

1526 | Electromagnetic Interference Spectrum Steering Technique using Switching Angle Modulation in DC-DC Converters

Le Yang, Shuo Wang University of Florida, United States

0980 | Modeling, Design, and Implementation of a Novel Transformer-Less Feedforward-Controlled Active EMI Filter for AC-DC Power Converters

Zhe Zhang¹, Ali M. Bazzi^{1,2} ¹University of Connecticut, United States; ²American University of Beirut, Lebanon

1070 | Design and Implementation of Selective Active EMI Filter with Digital Resonant Controller

Hongwu Peng, Balaji Narayanasamy, Asif Imran Emon, Zhao Yuan, Mustafeez Ul Hassan, Fang Luo University of Arkansas, United States

0862 | A Novel Simulation Model for Common-Mode Inductors based on the Permeance-Capacitance Analogy

Shotaro Takahashi¹, Satoshi Ogasawara² ¹Tokyo Metropolitan University, Japan; ²Hokkaido University, Japan

0179 | Analysis of Conducted Electromagnetic Noise Spectra Reduction for Flyback Converter using Frequency Dithering Technique

Rong Huang¹, Qing Ji¹, Lihong Xie², Min Cheng¹ ¹Soochow University, China; ²Bristol University, United Kingdom

0178 Conducted EMI Suppression using Power Semiconductor Filter in Fixed-Frequency Operation

Kun Zhang, John Wing-To Fan, Chung-Pui Tung, Henry Shu-Hung Chung City University of Hong Kong, China

0030 | Near Field Coupling's Impact on Radiated EMI and Mitigation Techniques for Power Converters in Automotive Applications

Juntao Yao¹, Shuo Wang¹, Zheng Luo¹ ¹University of Florida, United States; ²Monolithic Power Systems, Inc., United States

1492 | Investigation and Reduction of Near Electric Field Emitted from a Helical Inductor

Mohamed El-Sharkh, Shuo Wang, Boyi Zhang University of Florida, United States

Virtual 3

Thursday, October 15

11:35AM-12:05PM

S55 | **Predictive Control**

Chairs: Sheng Zheng, Yuhua Du

1552 | Proportional Integral Finite Set Model Predictive Control for a Transformer-Less Compact Multilevel Active Power Filter

Mohammad Babaie, Mohammad Sharifzadeh, Kamal Al-Haddad École de Technologie Supérieure, Canada

1330 A New Constant Switching Frequency Model Predictive Control Method for Grid Connected 5-level ANPC Inverter with Capacitors Sensor-less Voltage Balancing

Mostafa Abarzadeh¹, Nathan Weise¹, Liuchen Chang², Kamal Al-Haddad³ ¹Marquette University, United States; ²University of New Brunswick, Canada; ³École de Technologie Supérieure, Canada

0543 Model Predictive Control of Step-Up Matrix Converters

Vladimir Blasko¹, Mahmoud El Chamie¹, Boran Fan², Rolando Burgos² ¹Raytheon Technologies Research Center, United States; ²Virginia Polytechnic Institute and State University, United States

0578 | Model-Free Predictive Current Control for Three-Phase Power Converters with LCL Filter

Xiang Liu¹, Yongchang Zhang¹, Haitao Yang¹, Jose Rodriguez² ¹North China University of Technology, China; ²Universidad Andres Bello, Chile

0294 | Large Signal Stability Analysis of DAB Converter using Moving Discretized Control Set – Model Predictive Control

Luca Tarisciotti¹, Linglin Chen², Shao Shuai³, Tomislav Dragicevic⁴ ¹Universidad Andres Bello, Chile; ²Huawei Technologies, China; ³Zhejiang University, China; ⁴Technical University of Denmark, Denmark

0840 | A High Performance Feedback Quantized Predictive Control of Induction Machine Drives

S.M. Muslem Uddin, Galina Mirzaeva The University of Newcastle, Australia

0909 A Two-Step Reference Prediction Method for Predictive Current Control of Active Power Filters

Haitao Yang, Bingyu Li, Yongchang Zhang North China University of Technology, China

0471 Model-Free Predictive Current Control of PWM Rectifier under Unbalanced and Distorted Network

Yongchang Zhang, Li Bingyu, Jie Liu, Xiang Liu North China University of Technology, China

Thursday, October 15

11:35AM-12:05PM

S56 | Dual Active Bridge

Chairs: Qingyun Huang, Qiang Li

1337 An Alternative Dual Active Bridge Modulation to Minimize RMS Current and Extend ZVS Range

Faizah Zahin¹, Alireza Abasian², S. Ali Khajehoddin¹ ¹University of Alberta, Canada; ²University of Lorraine, France

1043 | Small Signal Model of Dual Active Bridge Converter for Multi-Phase Shift Modulation

Md Safayatullah, Issa Batarseh University of Central Florida, United States

1462 | Internal Model based PID Tuning of a Phase-Shift Control in a Single-Phase Bidirectional Dual Active Bridge DC-DC Converter

Sara Yazdani, Mehdi Ferdowsi, Pourya Shamsi Missouri University of Science and Technology, United States

0546 Design Considerations for PPS Controlled Current-Fed DAB Converter to Achieve Full Load Range ZVS with Low Inductor RMS Current

Jing Guo, Hua Han, Guo Xu, Zhiqiang Cai, Hui Wang, Mei Su Central South University, China

1554 Adaptive Modulation of a CLC-Resonant DAB Converter for Wide Range ZVS Operation with Minimum Reactive Circulating Power

C.A. Teixeira, R.H. Wilkinson, L.D. James, B.P. McGrath, D.G. Holmes *RMIT University, Australia*

1477 Analytical Modelling and Control of Dual Active Bridge Converter Considering all Phase-Shifts

Muhammad Faisal Fiaz¹, Sandro Calligaro¹, Roberto Petrella² ¹Free University of Bolzano-Bozen, Italy; ²University of Udine, Italy

1523 | A Medium Voltage Dual Active Bridge Converter based on Gen-3 10 kV SiC MOSFETs

Anup Anurag¹, Nithin Kolli¹, Sayan Acharya², Subhashish Bhattacharya¹, Todd R. Weatherford³, Andrew Parker³ ¹North Carolina State University, United States; ²ABB US Corporate Research Center, United States; ³Naval Postgraduate School, United States

1150 | Design of 1500V/200kW 99.6% Efficiency Dual Active Bridge Converters based on 1700V SiC Power MOSFET Module

Wei Xu, RuiYang Yu, Zhicheng Guo, Alex Q. Huang The University of Texas at Austin, United States

0752 | Design Optimization for Weighted Conduction Loss Minimization in a Dual-Active-Bridge-Based PV Microinverter

Michael D'Antonio, Shiladri Chakraborty, Alireza Khaligh University of Maryland, United States

Virtual 5

Thursday, October 15

11:35AM-12:05PM

S57 | Protection Devices and Solid State Circuit Breakers

Chairs: John Shen, Oscar Lucia

1409 | Main Breaker Switching Control and Design Optimization for a Progressively Switched Hybrid DC Circuit Breaker

Md Rifat Kaisar Rachi, Iqbal Husain North Carolina State University, United States

0506 Accelerated Aging Test of Solid-State DC Circuit Breaker based on 2.5kV Reverse Blocking IGCT

Rostan Rodrigues¹, Utkarsh Raheja¹, Pietro Cairoli¹, Luca Raciti², Antonello Antoniazzi² ¹ABB Inc., United States; ²ABB S.p.A, Italy

1604 Optimal Design of a Novel High-Power Thyristor-Based DC Circuit Breaker

Siavash Beheshtaein, Mandana Saravani, Farzad Banihashemi, Robert Cuzner University of Wisconsin-Milwaukee, United States

0521 | Experimental Validation of Parallel Connection of RB-IGCTs for High Efficiency Solid State Circuit Breaker

Yuzhi Zhang¹, Utkarsh Raheja¹, Rostan Rodrigues¹, Pietro Cairoli¹, Luca Raciti², Antonello Antoniazzi² ¹ABB Inc., United States; ²ABB S.p.A., Italy

1402 | Evaluate I²t Capability of SiC MOSFETs in Solid State Circuit Breaker Applications

Zhou Dong¹, Ren Ren¹, Fred Wang^{1,2} ¹The University of Tennessee, United States; ²Oak Ridge National Laboratory, United States

1292 | High Current Medium Voltage Bidirectional Solid State Circuit Breaker using SiC JFET Super Cascode

Utkarsh Mehrotra, Bahji Ballard, Douglas C. Hopkins North Carolina State University, United States

0547 | Lightning Impulse Protection for Grid-Connected Solid-State Transformers

Chunmeng Xu, Jia Wei, Liran Zheng, Xiangyu Han, Maryam Saeedifard, Karthik Kandasamy, Deepak Divan, Lukas Graber *Georgia Institute of Technology, United States*

1182 | Smart Plug 2.0: Solid State Smart Plugs Preventing Fire and Shock Hazards in Smart Homes and Offices

Zhixi Deng, Yuanfeng Zhou, Risha Na, Z. John Shen Illinois Institute of Technology, United States

Thursday, October 15

12:10PM-12:40PM

S58 | IPM and PM Motor Drives

Chairs: David Diaz Reigosa, Paolo Pescetto

0644 Analysis of Implementation Methodologies of Deadbeat Direct-Torque and Flux Control (DB-DTFC) for IPMSMs in Stationary and Rotatory Reference Frames

Daniel E. Gaona¹, Hadi El Khatib², Teng Long¹, Michael Saur³ ¹University of Cambridge, United Kingdom; ²Bundeswehr University-Munich, Germany; ³Audi AG, Germany

1156 | MTPA Tracking Algorithms for IPMSMs and SynRMs: Accurate Evaluation and Adaptive Tuning of Real Signal Injection and Virtual Signal Injection

Sandro Calligaro¹, Davide Marzona², Roberto Petrella², Amir Shahdadi² ¹Free University of Bozen, Italy; ²University of Udine, Italy

0645 | Overmodulation Strategy for Deadbeat-Flux and Torque Control of IPMSM with Flux Trajectory Control in the Stationary Reference Frame

Daniel E. Gaona¹, Hadi El Khatib², Teng Long¹, Michael Saur³ ¹University of Cambridge, United Kingdom; ²Bundeswehr University-Munich, Germany; ³Audi AG, Germany

0016 | A Novel Method for Measuring High Frequency DQ-Axis and Cross-Coupling Inductances in Interior Permanent Magnet Synchronous Machines

B. Shuang, Z.Q. Zhu University of Sheffield, United Kingdom

0490 | Enhancement of Disturbance Rejection Capability in Dual Three Phase PMSM System by using Virtual Impedance

Luocheng Yan¹, Ziqiang Zhu¹, Ji Qi¹, Yuan Ren², Chengwei Gan², Chris Hilton² ¹University of Sheffield, United Kingdom; ²Protean Electric, United Kingdom

0592 | Magnet Temperature Estimation in Variable Leakage Flux Permanent Magnet Synchronous Machines using the Magnet Flux Linkage

Diego F. Laborda¹, David Díaz Reigosa¹, Daniel Fernández¹, Kensuke Sasaki², Takashi Kato², Fernando Briz¹ ¹University of Oviedo, Spain; ²Nissan Motor Co. Ltd., Japan

0411 | Power Hardware-in-the-Loop based Emulation of an Open-Winding Permanent Magnet Machine

K.S. Amitkumar, Pragasen Pillay Concordia University, Canada

1466 | Electric Drives with Wide Bandgap Devices for Two-Phase Very Low Inductance Machines

Yibin Zhang, Damien Lawhorn, Peng Han, Aaron M. Cramer, Dan M. Ionel University of Kentucky, United States

Virtual 2

Thursday, October 15

12:10PM-12:40PM

S59 | Modelling and Stability of Converters and Systems

Chairs: Ke Ma, Yi Tang

0832 | Soft Startup Strategies for DAB-Based DCX in Composite Converters

Yucheng Gao, Vivek Sankaranarayanan, Robert W. Erickson, Dragan Maksimovic *University of Colorado-Boulder, United States*

0530 | Small-Signal Dynamic and High-Bandwidth Design of LLC Resonant Converter

Yi-Hsun Hsieh, Fred C. Lee Virginia Polytechnic Institute and State University, United States

1013 | Scalable State-Space Model of a Voltage Source Converter for Low-Frequency Stability Analysis

Federico Cecati¹, Rongwu Zhu¹, Marius Langwasser¹, Marco Liserre¹, Xiongfei Wang² ¹Christian-Albrechts-Universität Kiel, Germany; ²Aalborg University, Denmark

0395 A Master-and-Slave Resonant Tank Switch approach to Effectively Reduce Frequency Range in LCC Converter

Zhipeng Cheng¹, Han Peng¹, Jimin Chen¹, Yong Kang¹, Jinglin Wu², Xu Chu² ¹Huazhong University of Science and Technology, China; ²United Imaging Healthcare Co., China

0747 | A General Interpolated Model for Voltage Source Converters in Real-Time Simulation and HIL Test Applications

Wei Li, Fei Zhang OPAL-RT Technologies, Canada

1549 | Holistic Small-Signal Modeling and AI-Assisted Region-Based Stability Analysis of Autonomous AC and DC Microgrids

Yuxi Men¹, Lizhi Ding¹, Yuhua Du¹, Xiaonan Lu¹, Dongbo Zhao², Yue Cao³ ¹Temple University, United States; ²Argonne National Laboratory, United States; ³Oregon State University, United States

0857 | Transfer Learning for Identifying Impedance Estimation in Voltage Source Inverters

Mengfan Zhang¹, Xiongfei Wang¹, Dongsheng Yang², Zihao Cui¹, Mads Græsbøll Christensen¹ ¹Aalborg University, Denmark; ²Eindhoven University of Technology, Netherlands

0583 | Stability-Oriented Resonant Parameter Design for CLLC-Type Resonant Dual Active Bridge Converter with Swarm Intelligence

Fanfan Lin¹, Xin Zhang², Xinze Li¹ ¹Nanyang Technological University, Singapore; ²Zhejiang University, China

1000 AC Impedance Characterization of a PV Inverter with Grid-Forming Control

Rebecca Rye, Rolando Burgos, Ye Tang, Qing Lin, Dushan Boroyevich Virginia Polytechnic Institute and State University, United States

0298 Data-Driven based Control Applied to DC Network Converters for Voltage Bus Stabilization

J. Loranca-Coutiño¹, C.V. Villarreal-Hernandez¹, O.F. Ruiz-Martinez², J.C. Mayo-Maldonado¹, J.E. Valdez-Resendiz¹, J.C. Rosas-Caro², Daniel Guillen¹

¹Tecnologico de Monterrey, Mexico; ²Universidad Panamericana, Mexico

1344 Analysis and Minimization of Neutral Point Current Deviation in Grid Tied 3-Level NPC Converter under Various Grid Fault Conditions

Jaehoon Choi, Yongsug Suh Chonbuk National University, Korea

1485 | Small Signal Stability Analysis of Parallel Connected Grid-Tied Inverters with Direct and Self Synchronisation of the Phase Locked Loop

Peishuo Mu, Brendan McGrath, Donald Grahame Holmes, Carlos Teixeira RMIT University, Australia

1260 Accurate PWM Model of Multi-Updated L-filtered Voltage-Source Converters

Yangwen Wang, Zheming Jin, Xiongfei Wang Aalborg University, Denmark

Thursday, October 15

12:10PM-12:40PM

S60 | Multilevel Converter Control

Chairs: Tiefu Zhao, Kyo-Beum Lee

0764 Dead-Time Effect Compensation of a 5-Level ANPC WBG Inverter for High Power Density Aviation Applications

Dongwoo Han¹, Bokang Zhou¹, Fang Z. Peng¹, Suman Dwari² ¹Florida state University, United States; ²Raytheon Technologies Research Center, United States

1056 | Dual-Loop High Speed Voltage Balancing Control for High Frequency Four-Level GaN Totem-Pole PFC with Small Flying Capacitors

Qingxuan Ma, Qingyun Huang, Alex Q. Huang The University of Texas at Austin, United States

1229 | WBG Fractional Power Processing: A New Si-SiC Hybrid Voltage Source Inverter Design

Aritra Kundu, Risha Na, Asim Amir, Yuanfeng Zhou, Ian P. Brown, John Shen Illinois Institute of Technology, United States

1520 | Hybrid Modulation Method for Nearest-Level-Control-Based MMC to Suppress DC Power Fluctuation when Enabling Circulating Current Suppression

Bin He, Ke Ma, Xikai Xin, Weiyao Wang Shanghai Jiao Tong University, China

1416 | Improvement of the Commandability Zones of a Modular DC-DC Converter based on a Three-Level Boost Converter

Mohammad Afkar¹, Roghayeh Gavagsaz-Ghoachani¹, Matheepot Phattanasak², Jean-Philippe Martin³, Serge Pierfederici³ ¹Shahid Beheshti University, Iran; ²King Mongkut's University of Technology North Bangkok, Thailand; ³Université de Lorraine, France

0863 Indirect Model Predictive Control for a Grid-Tied Three-Level Neutral Point Clamped Converter with an *LCL* Filter

Mattia Rossi¹, Petros Karamanakos², Francesco Castelli-Dezza¹ ¹Politecnico di Milano, Italy; ²Tampere University, Finland

0014 New Modulation Technique for Five-Level Interleaved T-Type Inverters for

Switching Loss Reduction

Dereje Woldegiorgis, Yuqi Wei, Haider Mhiesan, Alan Mantooth University of Arkansas, United States

1037 | Multilevel Converter for Variable Speed Medium-Voltage Switched Reluctance Motor Drives

Ahmed Shehada¹, R. Krishnan², Abdul R. Beig¹ ¹Khalifa University, United Arab Emirates; ²Virginia Polytechnic Institute and State University, United States

Virtual 4

Thursday, October 15

12:10PM-12:40PM

S61 | Digital Control Implementation and Testing

Chairs: Issa Batarseh, Daniel Costinett

0203 | A Digital Single Period Control Method for Single-Inductor Dual-Output DC-DC Buck Converter

Daying Sun, Chao Huang, Chong Wang, Cong Xu, Wenhua Gu Nanjing University of Science and Technology, China

0988 | Control Strategies for a Unified Power Quality Conditioner with Hybrid Energy Storage in a Low-Voltage Distribution Network

Jose M. Piedra¹, Pablo Garcia², Ramy Georgious², Miguel Crespo³, Gesinne S.L.¹ ¹Spain; ²University of Oviedo, Spain; ³Cegasa Energía, S.L.U., Spain

1199 Robust Control based on Flatness Properties for a DC-DC Switching Power Converter

Roghayeh Gavagsaz-Ghoachani¹, Matheepot Phattanasak², Jean-Philippe Martin³, Serge Pierfederici³ ¹Shahid Beheshti University, Iran; ²King Mongkut's University of Technology North Bangkok, Thailand; ³Université de Lorraine, France

0946 | Reduction of Capacitance in Four-Switch Quasi-Switched Boost Inverter using Low-Frequency Ripple Damping Scheme

Pramit Nandi, Ravindranath Adda Indian Institute of Technology Guwahati, India

0811 Overall Interleaved Boost Converter Multiple-Objective Optimization Design based on NSGA2 Algorithm

Guanliang Liu, Weiyang Zhou, Qunfang Wu, Mengqi Wang University of Michigan-Dearborn, United States

1480 Design Issues for Real-Time PMSM Power-Hardware-in-the-Loop: Analysis at Switching Frequency

L. Bigarelli¹, M. di Benedetto¹, A. Lidozzi¹, F. Crescimbini¹, P.J. Grbović² ¹Roma Tre University, Italy; ²University of Innsbruck, Austria

1483 | Design Issues for a Real-Time PMSM Power-Hardware-in-the-Loop: Analysis at Fundamental Frequency

L. Bigarelli¹, M. di Benedetto¹, A. Lidozzi¹, L. Solero¹, P.J. Grbović² ¹Roma Tre University, Italy; ²University of Innsbruck, Austria

1181 Accurate Small-Signal Discrete-Time Model of Dual Active Bridge using Saltation Matrices

Rahul Mallik, Andrew M. Pace, Samuel A. Burden, Brian Johnson University of Washington, United States

Tech Program Schedule | Oral Sessions

Virtual 5

Thursday, October 15

12:10PM-12:40PM

S62 | Electric Drivetrains

Chairs: Prerit Pramod, Taehyung Kim

0624 | Optimum PWM Switching Mode Selection of Dual Inverter-Fed Open Winding IPMSM Drive System for High-Power Premium Class EV

Hiroaki Matsumori¹, Yuki Makimura¹, Soshi Morishita¹, Yuto Maeda¹, Takashi Kosaka¹, Naoto Saito², Yoshinobu Ito², Subrata Saha², Nobuyuki Matsui¹

¹Nagoya Institute of Technology, Japan; ²Aisin-AW Co., Ltd., Japan

1433 Discrete-Time Torque Control of High-Speed SPM Machine for Aircraft Electric Propulsion

Hao Zeng, James Swanke, Dheeraj Bobba, Bulent Sarlioglu, Thomas M. Jahns University of Wisconsin-Madison, United States

0937 An Improved Direct Torque Control with Battery Power Management of Open-End Winding Induction Motor Drive for Electric Vehicles

Utkal Ranjan Muduli^{1,2}, Abdul R. Beig², Khaled Al Jaafari², Jamal Y. Alsawalhi², Ranjan Kumar Behera¹ ¹Indian Institute of Technology Patna, India; ²Khalifa University, United Arab Emirates

1452 Comparison of IGBT and SiC Inverter Loss for 400V and 800V DC Bus Electric Vehicle Drivetrains

Alexander Allca-Pekarovic¹, Phillip J. Kollmeyer¹, Parisa Mahvelatishamsabadi¹, Tissa Mirfakhrai², Payam Naghshtabrizi², Ali Emadi¹

¹McMaster University, Canada; ²Eaton Research Laboratories, United States

0076 | Control of Boost Converter Module for Open-End Winding Permanent Magnet Motor Based, Dual Inverter Drive

Ryan Brody, Brandon M. Grainger University of Pittsburgh, United States

1282 | Half Bridge Sub-module Based Modular Multilevel Converter in 50Hz/50Hz Railway Continuous Co-phase Power Supply Application

Ziming Li¹, Xiaoqian Li¹, Yingdong Wei¹, Chao Lu¹, Zhuoxuan Shen¹, Yunzhi Lin², Zengqin Li³ ¹Tsinghua University, Dept. of Electrical Eng., China; ²China Railway Electrification Engineering Group, China; ³China Railway Electric Industry Co., Ltd, China

1270 | A Turboelectric Distributed Propulsion based on Brushless Doubly-Fed Machines

Peng Peng¹, Julia Zhang¹, Adam Brugmann², Lloyd Utt², Xiaodan Wang¹, Eric Kline², Longya Xu¹, Jin Wang¹, Boxue Hu¹ ¹The Ohio State University, United States; ²Safran Group, United States

0305 Modeling of Negative Resistance Converter Traction Power System

Zhan Shang, Xiaofeng Yang, Jingda Gu, Trillion Q. Zheng Beijing Jiaotong University, China

0976 On-Line Detection of Dc Arc Faults using Hurst Exponents for Hybrid-Electric Vehicles

Benjamin Shaffer¹, Yousef Abdullah¹, Jin Wang¹, Babak Arfaei², Matt Volpone² ¹Ohio State University, United States; ²Ford Motor Co., United States

0493 | Disturbance Rejection Ability Enhancement using a Repetitive Observer in Phase-Locked Loop for More Electric Aircraft

Mi Tang¹, Stefano Bifaretti², Sabino Pipolo¹, Andrea Formentini¹, Shafiq Odhano³, Pericle Zanchetta^{1,4} ¹University of Nottingham, United Kingdom; ²University of Rome Tor Vergata, Italy; ³University of Newcastle, United Kingdom; ⁴University of Pavia, Italy

0819 | Machine Learning Enabled Fast Multi-Objective Optimization for Electrified Aviation Power System Design

Derek Jackson¹, Syrine Belakaria², Yue Cao¹, Janardhan Rao Doppa², Xiaonan Lu³ ¹Oregon State University, United States; ²Washington State University, United States; ³Temple University, United States

1115 | Recoverability of Shipboard MVdc Architectures

Jacob Gudex, Mark Vygoder, Rounak Siddaiah, Robert Cuzner University of Wisconsin-Milwaukee, United States

Technical Program Schedule

POSTER SESSIONS

The following Digital Poster Sessions are all video on demand. See live "meet the author" times in the Live/Simu-Live Session Schedules.

Tuesday, October 13

9:00AM-9:30AM

P1 | NVH, Reliability and Machine Diagnostics

Chairs: Jose Antonino-Daviu, Francisco Paz

0688 | Irreversible Demagnetization Fault Prognosis in a Permanent Magnet Type Machines

Zia Ullah, Jin Hur Incheon University, Korea

0688 Online Detection of Irreversible Demagnetization Fault with Non-Excited Phase Voltage in Brushless DC Motor Drive System

Doo-Ho Kim, Jun-Hyuk Im, Ullah Zia, Jin Hur Incheon National University, Korea

0043 | Insulation Design of a High Frequency Electrical Machine for More Electric Aircraft Propulsion

Yalin Wang¹, Xuan Yi², Xiaolong Zhang², Yi Yin¹, Tao Han¹, Kiruba Haran² ¹Shanghai Jiao Tong University, China; ²University of Illinois at Urbana-Champaign, United States

0458 Vibration Prediction using the Relative Permeance of IPMSM

Seung-Hyeon Lee¹, In-Jun Yang¹, Won-Ho Kim¹, Ik Sang Jang² ¹Gachon University, Korea; ²Hyundai Mobis, Korea

1422 | Stray Flux-Based Incipient Stage Bearing Fault Detection for Induction Machines via Noise Cancellation Techniques

Genyi Luo¹, Thomas G. Habetler¹, Jed Hurwitz² ¹Georgia Institute of Technology, United States; ²Analog Devices, Inc., United Kingdom

0446 Investigation of Mode 0 Acoustic Noise Reduction of Interior Permanent Magnet Motor with a Principle of Radial Force Sum Flattening

Leping Wang, Ryo Umeoka, Akira Chiba Tokyo Institute of Technology, Japan

0363 Winding Condition Monitoring of Inverter-Fed PMSM using High-Frequency Current Injection

Zheng Xu, Jianzhong Zhang, Yaqian Zhang, Jin Zhao Southeast University, China

1534 Wide Speed Range NVH Performance Optimization in Permanent Magnet Synchronous Machines for Automotive Application using Vibration Synthesis

Shuvajit Das¹, Anik Chowdhury¹, Zhao Wan², Mojtaba Bahrami Kouhshahi², Alejandro Pina Ortega², Yilmaz Sozer¹ ¹The University of Akron, United States; ²Nexteer Automotive, United States

0642 | Design of Experiments for Stator Windings Insulation Degradation under High dv/dt and High Switching Frequency

Fernando Alvarez-Gonzalez¹, David Hewitt¹, Antonio Griffo¹, Jiabin Wang¹, Mohamed Diab², Xibo Yuan² ¹The University of Sheffield, United Kingdom; ²University of Bristol, United Kingdom

0299 Detection of Early Inter-Turn Stator Faults in Induction Motors via Symmetrical Components – Current vs Stray Flux Analysis

Konstantinos N. Gyftakis

University of Edinburgh, United Kingdom

1533 Sensitivity Analysis based NVH Performance Evaluation in Permanent Magnet Synchronous Machines using Lumped Unit Force Response

Shuvajit Das¹, Anik Chowdhury¹, Zhao Wan¹, Mojtaba Bahrami Kouhshahi², Alejandro Pina Ortega², Yilmaz Sozer¹ ¹The University of Akron, United States; ²Nexteer Automotive, United States

0425 | Remote Monitoring and Diagnostics of Blade Health in Commercial MW-Scale Wind Turbines using Electrical Signature Analysis (ESA)

Lijun He¹, Mohammad Attia², Liwei Hao¹, Biao Fang¹, Karim Younsi¹, Honggang Wang¹ ¹GE Research, United States; ²GE Renewable Energy, United States

Virtual 2

Tuesday, October 13

9:00AM-9:30AM

P2 | EV Charging Infrastructure

Chairs: Mohammed Alam, Rashmi Prasad

0790 Medium Voltage Contactless Power Transfer for EV Fast Charging

Isaac Wong, Suvendu Samanta, Subhashish Bhattacharya North Carolina State University, United States

0149 | Research on 11kW Wireless Charging System for Electric Vehicle based on LCC-SP Topology and Current Doubler

Yunhui Wang¹, Meng Xiong¹, Xun Wang¹, Qile Li², Zhao Jiang², Xuezhe Wei¹, Haifeng Dai¹ ¹Tongji University, China; ²Ningbo Preh Joyson Automotive Electronics, China

0717 A Sensorless Coil Detection Scheme based on Dead-Time Effect in Dynamic Wireless Power Transfer Systems

Utkarsh D. Kavimandan¹, Veda P. Galigekere², Burak Ozpineci², Jason Pries², Omer Onar², Satish M. Mahajan¹ ¹Tennessee Technological University, United States; ²Oak Ridge National Laboratory, United States

1047 Vehicle-to-Vehicle Inductive Power Transfer: Design Analysis and Topology Selection

Van Thuan Nguyen¹, Van Binh Vu², Vaibhav Uttam Pawaskar¹, Rakesh Krishna Katakam¹, Ghanshyamsinh Gohil¹ ¹The University of Texas at Dallas, United States; ²Newcastle University, United Kingdom

1524 Shield Design for 50 kW Three-Phase Wireless Charging System

Mostak Mohammad, Jason L. Pries, Omer C. Onar, Veda P. Galigekere, Gui-Jia Su Oak Ridge National Laboratory, United States

0058 An Automated Component-Based Hardware Design of a Three-Phase Dual-Active Bridge Converter for a Bidirectional On-Board Charger

Ryota Kondo¹, Philipp Schülting², Arne Hendrik Wienhausen², Rik W. De Doncker² ¹Mitsubishi Electric Corp., Japan; ²RWTH Aachen University, Germany

0872 An Improved PQ Zeta Converter with Reduced Switch Voltage Stress for Electric Vehicle Battery Charger

Radha Kushwaha¹, Bhim Singh¹, Vinod Khadkikar² ¹Indian Institute of Technology Delhi, India; ²Khalifa University-Abu Dhabi, United Arab Emirates

0865 Dynamic Process Analysis of a High-Power Bidirectional DC/DC Converter for Electric Vehicles

Liyan Zhu¹, Hua (Kevin) Bai¹, Alan Brown², Matt McAmmond² ¹The University of Tennessee-Knoxville, United States; ²Hella Electronics Corp., United States

0902 | Improved Power Quality Charging System based on High Step Down Gain Bridgeless SEPIC APFC for Light Electric Vehicles

Jitendra Gupta¹, Radha Kushwaha¹, Bhim Singh¹, Vinod Khadkikar² ¹Indian Institute of Technology Delhi, India; ²Khalifa University, United Arab Emirates

1252 Reducing the Impact of Plug-In Electric Vehicles on Distribution Transformers

Akansha Jain, Masoud Karimi-Ghartemani Mississippi State University, United States

0100 Design and Control of OBC-LDC Integrated Circuit with Variable Turns Ratio for Electric Vehicles

Issac Kim, Sunho Lee, Jung-Wook Park Yonsei University, Korea

0787 | High Frequency AC Power Distribution Network for Electric Vehicle Auxiliary Electrical System

Qunfang Wu¹, Mengqi Wang¹, Weiyang Zhou¹, Yanghe Liu² ¹University of Michigan-Dearborn, United States; ²Toyota Research Institute North America, United States

0032 | Electric Vehicle (EV) Chassis Dynamometer Testing

Annette von Jouanne, Jimi Adegbohun, Ryan Collin, Madeline Stephens, Brian Thayil, Caleb Li, Emmanuel Agamloh, Alex Yokochi

Baylor University, United States

0894 Estimation of Peukert Constant of Lithium-Ion Batteries and its Application in Battery Discharging Time Prediction

Yadong Gong, Xiaoyong Zhang, Heng Li, Hongtao Liao, Zhiqiang Meng, Yongjie Liu, Zhiwu Huang *Central South University, China*

Virtual 3

Tuesday, October 13

P3 | DC-DC Converters 1

Chairs: Manuel Arias, Hidemine Obara

1379 Intercell Transformer Coupled Buck Converter in One-of-Three Rectifier

Yuxiang Shi, Jing Xu, Goran Mandic, Sandeep Bala ABB US Corporate Research Center, United States

1224 A Merged-Two-Stage LEGO-PoL Converter with Coupled Inductors for Vertical Power Delivery

Youssef Elasser, Jaeil Baek, Minjie Chen Princeton University, United States

0115 | High Step-Down ZCS Buck Converter with Switched Capacitor

Jingjing Qi¹, Xuezhi Wu¹, Yuming Zhao², Jingdou Liu² ¹Beijing Jiaotong University, China; ²Shenzhen Power Supply Co., China

1550 A Quasi Output Voltage Regulation Technique for the Zero Inductor-Voltage Converter

Samuel Webb, Yan-Fei Liu *Queen's University, Canada*

0239 Loss Model and Output Impedance Analysis of a 48V-to-1V High Current Point-of-Load Converter

Alexander Fiore, Qingyun Huang, Alex Q. Huang The University of Texas-Austin, United States

0567 Comparative Topology and Power Loss Analysis on 48V-to-1V Direct Step-Down Non-Isolated DC-DC Switched-Mode Power Converters

Jin Woong Kwak, D. Brian Ma The University of Texas at Dallas, United States 9:00AM-9:30AM

0.000 M 0.200

0924 Pre-Charge, Discharge, and Mini-UPS Circuits in Auxiliary Power Network Architecture for 10 kV SiC-Based Power Electronics Building Blocks

Keyao Sun, Jun Wang, Xiang Lin, Rolando Burgos, Dushan Boroyevich *Virginia Polytechnic Institute and State University, United States*

1338 Synthesizing a Comprehensive Set of Converter Topologies for a Specified Voltage Gain

Ramanuja Panigrahi, Santanu K. Mishra, Avinash Joshi Indian Institute of Technology Kanpur, India

0844 | Low-Ripple High-Voltage DC Generation using a Serially Segmented Multiphase Voltage Multiplier

Sanghyeon Park, Juan Rivas-Davila Stanford University, United States

0841 | Modulation Strategy to Minimise RMS and Peak Currents in Dual Active Bridge Converter

Dibakar Das, Kaushik Basu Indian Institute of Science, India

Virtual 4

Tuesday, October 13

9:00AM-9:30AM

P4 | Emerging Technologies and Applications

Chairs: Huai Wang, Mark J Scott

0591 A Planar PCB based Energy Harvester with Voltage Multiplier

Yong Chen, Han Peng, Zhijie Feng, Zhipeng Cheng, Qiaoling Tong, Yong Kang Huazhong University of Science and Technology, China

1081 | Embedded Implementation of Rainflow-Counting for On-Line Predictive Maintenance

Carlo Concari, Giada Bettini University of Parma, Italy

0646 | A Ground Clamped Solid-State Circuit Breaker for DC Distribution Systems

Tiancan Pang, Muhammad Foyazur Rahman, Madhav D. Manjrekar University of North Carolina-Charlotte, United States

1441 A Dynamic Efficiency Optimization Method under ZVS Conditions in the Series-Series Type Wireless Power Transfer System

Yongbin Jiang, Xipei Yu, Chenxu Zhao, Ruibang Li, Min Wu, Longyang Yu, LaiLi Wang Xi'an Jiaotong University, China

0986 A Three Stage Architecture for a High Voltage Step-Down Wireless Charging System

Apurv Kumar Yadav, Arun Sankar, Alireza Khaligh University of Maryland, United States

1209 Analysis and Design Considerations of a Compact Transmitter Topology in Low Power Wireless Power Transfer System with Extremely Low Coupling Factor

S. Zhang Power Electronics, United States

0288 Application of SWPDT in the Feedback Control of Wireless EV Charging

Hao Chen, Zeqian Cheng, Zhongnan Qian, Jiande Wu, Xiangning He *Zhejiang University, China*

0658 Modelling and Analysis of Total Harmonic Distortion in Series-Series Wireless Power Transfer System for 6.78 MHz

Lixin Shi, J.C. Rodriguez, Pedro Alou Universidad Politécnica de Madrid, Spain

0117 | Transferring Driving Pulses to Implement Dual-Side Phase-Shift Control of Wireless Power Transfer on Primary Side using Driving Windings

Yiming Zhang, Xin Li, Shuxin Chen, Yi Tang Nanyang Technological University, Singapore

0330 A Study of High Electrical Power and High Efficiency Antenna in 13.56 MHz Wireless Power Transfer

Masanori Watanabe, Kan Akatsu Shibaura Institute of Technology, Japan

1513 | Transmitter Coil Design for Multi-Load Wireless Power Transfer Systems

Jie Li, Jingjing Sun, Ruiyang Qin, Daniel Costinett *The University of Tennessee, United States*

0053 Design and Implementation of Paralleled Inverters with *LCLC* Resonant Tanks to Generate Plasma for Surface Treatment Applications

Tsai-Fu Wu, Anumeha Kumari, Ling-Chia Yu, Kuan-Chung Chen National Tsing Hua University, Taiwan

Tuesday, October 13

9:35AM-10:05AM

P5 | Electric Machines Materials, Losses, Thermal, Manufacturing, Modelling Issues

Chairs: Rajeev Vyas, Edwin Xiaki Sun

1200 | A Simplified Efficiency Estimation approach for Converter-Fed Induction Motors

John Mushenya, Azeem Khan, Paul Barendse University of Cape Town, South Africa

1602 | Multilayer Bonded Magnets in Surface-Mounted PM Synchronous Machines

Mostafa Ahmadi Darmani, Emir Poskovic, Silvio Vaschetto, Fausto Franchini, Luca Ferraris, Andrea Cavagnino *Politecnico di Torino, Italy*

0407 | Loss Modeling for Interlocked Magnetic Cores

Zbigniew Gmyrek¹, Andrea Cavagnino², Silvio Vaschetto², Gerd Bramerdorfer³ ¹Lodz University of Technology, Poland; ²Politecnico di Torino, Italy; ³Johannes Kepler University Linz, Austria

1091 | Modeling of the Temperature Dependence of Soft Magnetic Material

Gereon Goldbeck¹, Gerd Bramerdorfer¹, Wolfgang Amrhein¹, Josef Hinterdorfer², Bernhard Weiß ¹Johannes Kepler University Linz, Austria; ²Voestalpine Stahl GmbH, Austria

0660 Off-Line Efficiency Mapping of Induction Motors Operated in Wide Torque-Speed Ranges

Ornella Stiscia, Sandro Rubino, Silvio Vaschetto, Andrea Cavagnino, Alberto Tenconi *Politecnico di Torino, Italy*

0979 Winding Embedded Liquid Cooling for High Power Density Slotless Motor

Ritvik Chattopadhyay¹, Md Sariful Islam¹, Rajib Mikail², Iqbal Husain¹ ¹North Carolina State University, United States; ²ABB US Corporate Research Center, United States

1539 | Multi-Physics Analysis to Effectively Evaluate Thermal Performance of Liquid-Cooled Electric Machines

Abdul Wahab Bandarkar¹, Md Tawhid Bin Tarek¹, Lavanya Vadamodala¹, Yilmaz Sozer¹, David Colavincenzo², Fernando Venegas², Jeffrey Geither²

¹The University of Akron, United States; ²Bendix Commercial Vehicle Systems, United States

0801 Coupled Electromagnetic and Thermal Optimisation Strategies for Direct-Drive Linear Permanent Magnet Synchronous Motors

Soroosh Haji Hosseinnejad¹, Thor F. Besier², Andrew J. Taberner², Bryan P. Ruddy² *The University of Auckland, New Zealand*

0918 | Thermal Modelling of a Permanent Magnet Synchronous Machine through FEM Simulation with Experimental Validation

Alejandro L. Rodriguez¹, Patrick Lombard¹, Vincent Leconte¹, Philippe Wendling¹, Irma Villar² ¹Altair Engineering France, France; ²Basque Research and Technology Alliance, Spain

0423 Analysis of Axial Temperature Variation Effect on the Performance of Five-Phase Permanent Magnet Assisted Synchronous Reluctance Motor

Md. Khurshedul Islam, Seungdeog Choi Mississippi State University, United States

0070 | Physically Meaningful Linear Electric Machine Frequency Analysis and Modeling Technique without a Constant Speed Assumption

Austin E.N. Gaspar University of Wisconsin-Madison, United States

Tuesday, October 13

9:35AM-10:05AM

P6 | Direct Drive, Actuators, Magnetic Gearing, Axial Flux, Non-Conventional Machines

Chairs: Udochukwu Akuru, Lijian Wu

0441 | Eddy Current Loss Reduction in 3D-Printed Axial Flux Motor using 3D-Printed SMC Core

Hyun-Jo Pyo¹, Jae Won Jeong², Jihun Yu², Dong-Woo Nam¹, Seo-Hee Yang¹, Won-Ho Kim¹ ¹Gachon University, Korea; ²Korea Institute of Material Science, Korea

0454 | Basic Characteristics of an Axial-Gap Type Magnetic Resonant Coupling Machine with Different Numbers of Poles

Kazuto Sakai, Takanobu Akiyama Toyo University, Japan

0897 A Robust Position Control System based on Load Force Observer for RotLin Machine

Lang Bu, Yasutaka Fujimoto Yokohama National University, Japan

0907 A Motor Design based on Wireless Magnetic Resonance Coupling Technology

Besong John Ebot, Yasutaka Fujimoto Yokohama National University, Japan

0174 Design and Testing of a High Force Density Linear Electromagnetic Actuator

Zhengmeng Liu, Jiabin Wang The University of Sheffield, United Kingdom

0871 | Design and Analysis of a Vernier Motor Considering Series Compensation

Abdur Rehman, Byungtaek Kim, Young Hoon Joo Kunsan National University, Korea

1109 Comparative Analysis of Outer-Rotor Flux-Modulated Permanent Magnet Generator Topologies

John Mushenya, Azeem Khan University of Cape Town, South Africa

0498 Analysis and Optimization of Radial Flux Modular Stator Permanent Magnet Synchronous Machines

Werner Jara¹, Gerd Bramerdorfer², Carlos Madariaga¹, Javier Riedemann¹, Juan Tapia³, Gordan Segon⁴, Werner Koppelstätter⁴, Siegfried Silber⁴

¹Pontificia Universidad Catolica, Chile; ²Johannes Kepler University Linz, Austria; ³University of Concepcion, Chile; ⁴Linz Center of Mechatronics, Austria

0956 Analysis of a Five-Phase PM Vernier Machine Topology with Two-Slot Pitch Winding

Shaohong Zhu, Tom Cox, Zeyuan Xu, Chris Gerada University of Nottingham, United Kingdom

Tuesday, October 13

9:35AM-10:05AM

P7 | DC-DC Converters 2

Chairs: Grant Pitel, Luca Solero

0467 A Wide Range Output Voltage Gain Operation with Mode Transition of Single Input Dual Output LLC Converter

Yuki Kinoshita, Hitoshi Haga Nagaoka University of Technology, Japan

1495 | ZVS Analysis of Half Bridge LLC-DCX Converter Considering the Influence of Resonant Parameters and Loads

Guoliang Deng, Yao Sun, Guo Xu, Xiaoying Chen, Shiming Xie, Shutian Yan, Mei Su, Yuefeng Liao *Central South University, China*

1038 | LLC Resonant Converter with Reconfigurable Voltage Rectifier for Wide Input Voltage Applications

Fahad Alaql, Issa Batarseh University of Central Florida, United States

1046 Review and Comparison of Resonant DC-DC Converters for Wide-Output Voltage Range Applications

Fahad Alaql, Issa Batarseh University of Central Florida, United States

0512 | Multiple-Output LLC Resonant Converter with Magnetic Control

Yuqi Wei¹, Quanming Luo², Dereje Woldegiorgis¹, Alan Mantooth¹ ¹University of Arkansas, United States; ²Chongqing University, China

0110 Comparison of a Dual Active Bridge and CLLC Converter for On-Board Vehicle Chargers using GaN and Time Domain Modeling Method

Konstantin Siebke, Regine Mallwitz Technische Universität Braunschweig, Germany

0693 Efficiency Optimization of Dual Active Bridge DC-DC Converter with Triple Phase-Shift Control

Garry Jean-Pierre¹, Necmi Altin², Ahmad El Shafei¹, Adel Nasiri¹ ¹University of Wisconsin-Milwaukee, United States; ²Gazi University, Turkey

0935 An Optimized Scheme for Current Stress Reduction with Zero-Voltage Switching

in Dual-Active-Bridge Converters under Varying Input Voltage Haoyu Zhang, Motoki Akihiro, Tomoyuki Mannen, Takanori Isobe University of Tsukuba, Japan

1478 | Hardware Design of SiC-Based Four-Port DAB Converter for Fast Charging Station

M. di Benedetto¹, A. Lidozzi¹, L. Solero¹, F. Crescimbini¹, S. Bifaretti² ¹Roma Tre University, Italy; ²Tor Vergata University, Italy

0825 | Integrated Planar Transformer Design of 3-kW Auxiliary Power Module for Electric Vehicles

Ramadhan Muhammad¹, Sangjin Kim¹, Chaeyoung Suk¹, Sewan Choi¹, Byeongu Yu², Sanghun Park² ¹Seoul National University of Science and Technology, Korea; ²LG Electronics, Korea

1501 Design and Optimization of a High Power Density Low Voltage DC-DC Converter for Electric Vehicles Yang Chen, Wenbo Liu, Andrew Yurek, Xiang Zhou, Bo Sheng, Yan-Fei Liu *Queen's University, Canada*

0746 | Modulation Strategy for a Multilevel DC-DC Converter Interfacing EV Battery and Propulsion Inverter during Regenerative Mode

Vinay Rathore¹, Kaushik Rajashekara¹, Parthasarathy Nayak² ¹University of Houston, United States; ²Emerson Commercial and Residential Solutions, United States

0524 A Novel Topology for an Extendable Isolated DC-DC Multi-Port Power Converter with a Multipurpose Hybrid Energy Storage System

Sina Vahid, Ayman El-Refaie Marquette University, United States

0104 A Family of High Frequency Isolated Impedance Source DC-DC Converters for Distributed Power Generation Systems

Zeeshan Aleem, Hyoung-Kyu Yang, Jung-Wook Park Yonsei University, Korea

0791 | High Frequency Active-Clamped Zero-Current Switching Current-Fed Push-Pull Converter for Micro-Converter Applications

Qunfang Wu¹, Mengqi Wang¹, Weiyang Zhou¹, Can Huang², Guanliang Liu¹, Xiaoming Wang³ ¹University of Michigan-Dearborn, United States; ²Lawrence Livermore National Laboratory, United States; ³Somion Global LLC, United States

Virtual 4

Tuesday, October 13

9:35AM-10:05AM

P8 | Converters for AC and DC Microgrids

Chairs: Ali Marzoughi, Qiang Wei

1232 A 4kV/100A SiC MOSFETs-Based Solid State DC Circuit Breaker with Low Stray Inductances and Powered by a Load-Independent Wireless Power Transfer System

Zhonghao Dongye¹, Yao Wang¹, Hua Zhang¹, Sheng Zheng², Xiaonan Lu³, Fei Lu¹ ¹Drexel University, United States; ²Oak Ridge National Laboratory, United States; ³Temple University, United States

1305 | A Distributed approach for Secondary and Tertiary Layer Control in DC Microgrids

Ashray Manur, Maitreyee Marathe, Giri Venkataramanan University of Wisconsin-Madison, United States

1392 Current Derivative Assisted Protection Coordination System for Faster Fault Isolation in a Radial DC Microgrid

Md Rifat Kaisar Rachi, Mehnaz Akhter Khan, Iqbal Husain North Carolina State University, United States

0804 A Dynamic Diffusion Algorithm for Distributed Secondary Control of DC Microgrids

Dawei Liao¹, Fei Gao¹, Yutong Zhao¹, Daniel Rogers² ¹Shanghai Jiao Tong University, China; ²University of Oxford, United Kingdom

1146 A New approach for Hybrid AC-DC Circuit Fault Analysis

Mohammad Mehdi Rezvani, Shahab Mehraeen Louisiana State University, United States 0850 Modular Hybrid DC Circuit Breaker for Medium-Voltage DC System

Dong-Uk Kim, Sungmin Kim Hanyang University, Korea

0744 A Rule based EMS for Fast Charging Station with CHIL Implementation

Dhruv Kler, Asal Zabetian Hosseini, Sony Varghese, Chu Sun, Geza Joos *McGill University, Canada*

1048 Impedance Estimator for Multi-Source DC Microgrids with Islanding Detection Capabilities

Cristian Blanco, Pablo Garcia, Andres Suarez, Irene Pelaez University of Oviedo, Spain

0125 | An Emulation Platform for Mimicking Unbalanced Loads and Sources

A.S. Vijay, Suryanarayana Doolla, Mukul C. Chandorkar Indian Institute of Technology-Bombay, India

0805 An Improved Distributed Secondary Control Scheme for Islanded AC Microgrids

Jiahao Yu, Fei Gao, Shanshan Wei, Junzhong Xu, Dawei Liao, Yutong Zhao Shanghai Jiaotong University, China

0818 Distributed Averaging Optimization-Based Technique for Microgrid Secondary Control

Fahad Alshammari, Ayman El-Refaie Marquette University, United States

Virtual 1

Tuesday, October 13

10:10AM-10:40AM

P9 | Electric Machines (IPMSM and Synchronous Reluctance)

Chairs: Takashi Kosaka, Ignacio Galiano

0762 | Induction Motor Performance Prediction using Static FEA: Method Description and Comparison with Time-Domain Approach

Matteo Carbonieri¹, Lino Di Leonardo², Marco Tursini², Marco Villani², Mircea Popescu³ ¹University of Padova, Italy; ²University of L'Aquila, Italy; ³Motor Design Ltd., United Kingdom

1361 Influence of Airgap Length on Performance of High Power PM-Assisted Syn-Rel Machines

Tianjie Zou¹, David Gerada¹, Adam Walker¹, Gaurang Vakil¹, Salvatore La Rocca¹, Antonino La Rocca¹, Krzysztof Paciura², Richard Barden², Emil Ernest², Shaohong Zhu², Naila Qayyum², Alastair McQueen², Anuvav Bardalai¹, R.M. Ram Kumar¹, Alessandro Marfoli¹, Chris Gerada¹

¹University of Nottingham, United Kingdom; ²Cummins Corporate R&T, United Kingdom

0463 | Improvement in Torque Density by Ferrofluid Injection into Interior Permanent Magnet Synchronous Motor

In-Jun Yang¹, Seung-Hyeon Lee¹, Dong-Ho Kim², Kwang-Soo Kim³, Ik Sang Jang⁴, Won-Ho Kim¹ ¹Gachon University, Korea; ²Hanyang University, Korea; ³Halla University, Korea; ⁴Hyundai Mobis, Korea

0613 Design of High-Speed Wet-Type Permanent Magnet Synchronous Motor Considering Oil Frictional Loss

Wenbo Jin, Hong Guo, Jinquan Xu Beihang University, China

1194 | Experimental Test on Dual Three-Phase Synchronous Reluctance Motor

Jun-Kyu Park¹, Chaelim Jeong², Alberto Bellini³, Claudio Bianchini⁴, Nicola Bianchi² ¹Korea Electrotechnology Research Institute, Korea; ²University of Padova, Italy; ³University of Bologna, Italy; ⁴University of Modena and Reggio Emilia, Italy

0882 The Study on Improving Reluctance Torque and Preventing Irreversible Demagnetization by Modified the Shape of Conventional Ferrite Flux-Concentrated Motor

Min-Jae Jeong¹, Hyun-Jo Pyo¹, Dong-Woo Nam¹, Seo-Hee Yang¹, KangBeen Lee², Won-Ho Kim¹ ¹Gachon University, Korea; ²Hyundai Kia Namyang Institute, Korea

1538 Design Optimization of a Novel Axial Flux Ferrite Magnet Assisted Synchronous Reluctance Motor

Md Tawhid Bin Tarek, Yilmaz Sozer The University of Akron, United States

1279 | Magneto-Structural Combined Dimensional and Topology Optimization of Interior Permanent Magnet Synchronous Machine Rotors

Feng Guo, Ian P. Brown Illinois Institute of Technology, United States

0403 | Detection Technique for Manufacturing Imperfection of Rare-Earth Magnets on IPMSM

Deok-Jae Kwon, Jun-Hyuk Im, Mudassir Raza Siddiqi, Jin Hur Incheon National University, Korea

0966 | Finite Element-based Multi-objective Design Optimization of IPM Considering Saturation Effects for Constant Power Region of Operation

Qingqing Ma, Ayman El-Refaie Marquette University, United States

1171 | A Unified Model for Field Weakening Operation of Synchronous AC Machines

Dheeraj Bobba, Bulent Sarlioglu University of Wisconsin-Madison, United States

0761 | Simple Robust Rotor 5 MW Synchronous Reluctance Generator

Jandré Dippenaar, Maarten J. Kamper Stellenbosch University, South Africa

0417 | Parameter Measurements and Modeling of a Novel Hybrid Variable Flux Machine with Series Rare-Earth and AlNiCo Magnets

Rajendra Thike, Pragasen Pillay Concordia University, Canada

1184 | Hybrid Excitation Method for Higher Pole Number Grid-Tie Synchronous Generators

Dillan K. Ockhuis, Maarten J. Kamper, Andrew T. Loubser Stellenbosch University, South Africa

Virtual 2

Tuesday, October 13

10:10AM-10:40AM

P10 | Transportation Electrification and Battery Management Systems

Chairs: Hassan Hossam Hassan Eldeeb, Rafael Pena Alzola

0147 | Position Sensorless PMSM Drive for Solar PV-Battery Light Electric Vehicle with Regenerative Braking Capability

Sreejith R., Bhim Singh Indian Institute of Technology Delhi, India

0091 A Comparative Study of Technologies for Wayside Energy Storage in DC Rail Transportation Systems

Oindrilla Dutta, Ahmed Mohamed City College of New York, United States

2020 IEEE ENERGY CONVERSION CONGRESS & EXPOSITION®

0905 | Short Current Protection Circuit for Automotive Motor Inverters Application based on GaN Transistors

Jacob Parnes, David Shapiro, Gleb Vetakh, Yuri Gitelmakher, Gregory Bunin VisIC Technologies, Israel

0773 | Speed Planning for Autonomous Driving in Dynamic Urban Driving Scenarios

Minggiang Wang¹, Zhenpo Wang¹, Lei Zhang¹, D.G. Dorrell² ¹Beijing Institute of Technology, China; ²University of Witwatersrand, South Africa

0540 | Active Voltage Balancing of Integrated Modular Drive with Series DC-Link Capacitors

Fan Wu¹, Ayman M. El-Refaie¹, Thomas M. Jahns² ¹Marguette University, United States; ²University of Wisconsin-Madison, United States

1287 | Four-Port Modular Multilevel AC/AC Converter in Continuous Co-Phase Traction Power **Supply Application**

Mingrui Li¹, Xiaoqian Li¹, Yunzhi Lin², Yingdong Wei¹, Chao Lu¹, Zhuoxuan Shen¹, Ziming Li¹, Zengqin Li³ ¹Tsinghua University, China; ²China Railway Electrification Engineering Group, China; ³China Railway Electric Industry Co., Ltd, China

1110 | Stray Inductance-Based Current Sensing Considering Temperature-Dependent DCR Effect

Sang Min Kim, Taesuk Kwon Hyundai Mobis, Korea

0235 Zero-Sequence Current Control in a Back to Back Inverter with Pump Back Test Configuration

Yuzhi Zhang¹, Zhongjing Wang², Yu Du¹ ¹ABB Corporate Research Center, United States; ²University of Arkansas, United States

0575 | A Two-Stage Multiple-Output Automotive LED Driver Architecture

Satyaki Mukherjee¹, Alihossein Sepahvand², Vahid Yousefzadeh², Montu Doshi², Dragan Maksimović¹ ¹University of Colorado, United States; ²Texas Instruments, Inc., United States

0138 | Integrated Motor and Two-Speed Gearbox Powertrain System Development for Electric Vehicle

Puhui Liu, Shun Feng New Energy Vehicle Propulsion Engineering Center, China

0671 | Energy Loss Analysis in a SiC/IGBT Propulsion Inverter over Drive Cycles Considering Blanking Time, MOSFET's Reverse Conduction and the Effect of Thermal Feedback

Sepideh Amirpour¹, Torbjörn Thiringer², Dan Hagstedt¹ ¹China Euro Vehicle Technology AB, Sweden; ²Chalmers University of Technology, Sweden

0895 | Sizing of DC-Link Capacitor Considering Voltage and Current Ripple Requirements for a **3-Phase Voltage Source Inverter**

Ali Safayet, Mohammad Islam, Tomy Sebastian Halla Mechatronics, United States

0729 | Evaluation of Parameter Variations of Equivalent Circuit Model of Lithium-Ion Battery under Different SOH Conditions

Zhiyong Xia, Jaber A. Abu Qahoug University of Alabama, United States

0098 | A Novel Neural Network with Gaussian Process Feedback for Modeling the State-of-Charge of Battery Cells

Abdallah Chehade¹, Ala A. Hussein² ¹University of Michigan-Dearborn, United States; ²Prince Mohammad Bin Fahd University, Saudi Arabia

1414 | Dual Side Control of Wireless Power Transfer with Mutual Inductance Estimation

MinJae Sung, Geon-Hong Min, Junk-Ik Ha Seoul National University, Korea

1619 Novel Load Independent Control Structures for a Resonant LCC EV Wireless Charging Converter

Antonio Menchana, Christopher Duke, Dan Gelfer, Pang Vang, Van Xiong, Ali Arbabi, Isabelle Badall, Justin Ortiz, Mohamed Badawy

San Jose State University, United States

0107 | Harmonic Optimization Method by SHEPWM for Contactless Power Transfer System with Series-Series Compensation

Jichang Yang, Dong Jiang, Yuanzhi Zhang, Ronghai Qu Huazhong University of Science and Technology, China

0361 Dynamic Response Analysis based on Multiple-Phase-Shift in Dual-Active-Bridge

Yu Yan, Hua Bai The University of Tennessee, United States

0686 Hybrid Power Electronics Architecture to Implement the Fuel Cell Management System

Milad Bahrami, Jean-Philippe Martin, Gael Maranzana, Serge Pierfederici, Farid Meibody-Tabar, Mathieu Weber Université de Lorraine, France

Virtual 3

Tuesday, October 13

10:10AM-10:40AM

P11 | AC-DC Converters and AC-AC Converters (Topology, Modulation, Control)

Chairs: John Lam, Carl Ho

0286 Optimal Design of Integrated Planar Inductor for a Hybrid Totem-Pole PFC Converter

Jun Zou, Hongfei Wu, Yue Liu, Liu Yang, Xingyu Xu Nanjing University of Aeronautics and Astronautics, China

1352 | High-Performance Single-Stage Universal-Input Isolated AC-DC Converter Utilizing an Impedance Control Network

Mausamjeet Khatua¹, Ashish Kumar², Saad Pervaiz², Sombuddha Chakraborty², Khurram K. Afridi¹ ¹Cornell University, United States; ²Texas Instruments Inc., United States

1390 | Load-Independent Self-Tuned Parallel Resonant Power Oscillator

Shuya Matsuhashi¹, Yoshiro Hara¹, Kien Nguyen¹, Hiroo Sekiya¹, Takeshi Uematsu², Shingo Nagaoka², Taichi Mishima² ¹Chiba University, Japan; ²Omron Corp., Japan

0413 A New Modular SPWM Strategy for Parallel Isolated Matrix Rectifiers to Improve Current Quality

Fanxiu Fang, Yuzhuo Li, Yunwei Li University of Alberta, Canada

1606 AC-DC Isolated Matrix Converter Charger: Topology and Modulation

Luca Rovere, Sabino Pipolo, Andrea Formentini, Pericle Zanchetta University of Nottingham, United Kingdom

1271 Unified Power Quality Conditioner with Shared Legs and High-Frequency Transformer

Alan S. Felinto, Cursino B. Jacobina Federal University of Campina Grande, Brazil

1188 Hybrid Converter with Reduced DC-Link Voltage using an H-Bridge Cell for Split-Phase Power System

Bruna S. Gehrke¹, Cursino B. Jacobina¹, Italo R.F.M.P. da Silva², Reuben P.R. Sousa¹ ¹Federal University of Campina Grande, Brazil; ²Federal Rural University of Pernambuco, Brazil

1255 | Single-Phase AC-DC-AC Multilevel Converter based on Three-Leg Modules Series-Connected to H-Bridges through Transformers

Rodrigo P. de Lacerda¹, Cursino B. Jacobina¹, Edgard L.L. Fabricio² ¹Federal University of Campina Grande, Brazil; ²Federal Institute of Paraíba, Brazil

1381 | Energy Density Enhancement of a Merged-Energy-Buffer based Two-Stage AC-DC Converter

Firehiwot Gurara, Maida Farooq, Mausamjeet Khatua, Danish Shahzad, Khurram K. Afridi Cornell University, United States

Virtual 4

Tuesday, October 13

10:10AM-10:40AM

P12 | Solid State Transformers, V2G, and Power Converter Control

Chairs: Akanksha Singh, Mona Ghassemi

0603 | Protection Coordination Challenges for Microgrid Distribution Network with High Penetration Inverter-Based Resources

Vincentius Raki Mahindara¹, Ardyono Priyadi¹, Margo Pujiantara¹, Mauridhi Hery Purnomo¹, Ahmed Y. Saber², Eduard Muljadi³

¹Institut Teknologi Sepuluh Nopember, Indonesia; ²ETAP, United States; ³Auburn University, United States

0077 | Power and Voltage Regulation of a Solid-State Transformer based Quad-Active Bridge DC-DC Converter using Adaptive Linear Quadratic Regulator and Nonlinear Model Predictive Control

Mohammed Hatatah, Brandon M. Grainger University of Pittsburgh, United States

0558 Study on DC-Voltage Rising of Blocked Port in High-Frequency-Link Converters

Chunpeng Zhang, Huaru Li, Wusong Wen, Xin Mo, Zhengming Zhao Tsinghua University, China

1083 Dynamic DC-Link Current Minimization Control to Improve Current-Source Solid-State Transformer Efficiency

Liran Zheng, Xiangyu Han, Rajendra Prasad Kandula, Deepak Divan *Georgia Institute of Technology, United States*

1432 500kVA Hybrid Solid State Transformer (HSST): Design and Implementation of the SST

Sanjay Rajendran, Soumik Sen, Liqi Zhang, Zhicheng Guo, Qingyun Huang, Alex Q. Huang The University of Texas at Austin, United States

0560 Quasi-Proportional-Resonant Control Strategy for the Hybrid Distribution Transformer with LCL-Type Converters

Yibin Liu, Deliang Liang, Shaofeng Jia, Kun Zhou, Yachen Gao, Shengliang Cai, Dawei Li, Shuai Feng Xi'an Jiaotong University, China

1512 A Manitoba Converter based Bi-Directional On-Board charger for Plug-In Electric Vehicles

Avishek Ghosh, Carl Ngai Man Ho, Ken King Man Siu University of Manitoba, Canada

0166 | Improvement of Transient Current Response of a Single-Phase Inverter in a V2G System using Disturbance Rejection and Command Feedforward Control

Horyeong Jeong, Jae Suk Lee Jeonbuk National University, Korea

0331 Inertia Emulation in Power Converters with Communication Delays

Ngoc Bao Lai¹, Andres Tarraso², Gregory N. Baltas¹, Leonardo Marin², Pedro Rodriguez² ¹Universidad Loyola, Spain; ²Universitat Politecnica de Catalunya, Spain

1142 Bifurcation Analysis of Converter-Dominated Electrical Distribution Systems Dionysios Moutevelis¹, Javier Roldán-Pérez¹, Milan Prodanovic¹, Santiago Sanchez Acevedo² ¹IMDEA Energy Institute, Spain; ²SINTEF Energy Research, Norway

0313 | DQ Impedance Reshaping of Three-Phase Power-Controlled Grid-Connected Inverter for Low-Frequency Stability Improvement under Weak Grid Condition

Weihua Zhou¹, Yanbo Wang¹, Raymundo E. Torres-Olguin², Zhe Chen¹ ¹Aalborg University, Denmark; ²SINTEF Energy Research Institute, Norway

1401 An RL-Type Active Damper for Stabilizing Wide Band Oscillations in Grid-Tied Inverter Systems

Li Cheng, Zeng Liu, Jinjun Liu, Yiming Tu Xi'an Jiaotong University, China

0702 | Power Emulator of Variable Speed Drive with Grid Frequency Support in Multi-Converter based Power Grid Emulation System

Shuyao Wang, Yiwei Ma, Taylor Short, Leon M. Tolbert, Fred Wang The University of Tennessee, United States

0788 Vulnerability Assessments for Power-Electronics-Based Smart Grids

Jinan Zhang, Jin Ye, Lulu Guo, Fangyu Li, Wenzhan Song University of Georgia, United States

0940 Optimal Design of PV Systems Considering Levelized Cost of Energy and Power Density

Dongsen Sun¹, Xiaonan Lu¹, Liang Du¹, Yue Cao² ¹Temple University, United States; ²Oregon State University, United States

Virtual 1

Tuesday, October 13

11:00AM-11:30AM

P13 | Electric Machine Applications in Automotive, Aerospace, Renewable, Robotics

Chairs: Alireza Fatemi, Rajesh Deodhar

0323 | Design and Evaluation of Air-Flow Cooling System for High-Power-Density Motor for Robotic Applications

Awungabeh F. Akawung, Yasutaka Fujimoto Yokohama National University, Japan

0903 An Accuracy Study of Finite Element Analysis-based Efficiency Map for Traction Interior Permanent Magnet Machines

Katsuyuki Narita¹, Hiroyuki Sano¹, Nicolas Schneider¹, Kazuki Semba¹, Koji Tani¹, Takashi Yamada¹, Ryosuke Akaki² ¹JSOL Corp., Japan; ²SUZUKI Motor Corp., Japan

1527 Design of a PM-Assist Synchronous Reluctance Machine for High Performance Applications

Amina Shrestha¹, Mazharul Chowdhury², Mohammad Islam¹, Christian Ross¹ ¹Halla Mechatronics, United States; ²North Carolina State University, United States

1603 A Novel Design for a High Specific Power Interior Permanent Magnet Machine for Aerospace Applications

Rasul Hemmati, Sina Vahid, Ayman El-Refaie Marquette University, United States

1530 Design and Analysis of a High Saliency Transverse Flux Machine with a Novel Rotor Structure for Traction Applications

Anik Chowdhury¹, Shuvajit Das¹, Teppei Tsuda², Naoto Saito², Subrata Saha², Yilmaz Sozer¹ ¹The University of Akron, United States; ²Aisin AW Co LTD, Japan

0647 | Integrated, Eddy-Current-Based Sensing of Rotor Position for Magnetic Levitation

Patricio Peralta, Sean Thomas, Yves Perriard École Polytechnique Fédérale de Lausanne, Switzerland

0683 Design of a Multiphase Coreless Axial Flux Permanent Magnet Machine for Unmanned Aerial Vehicle Propulsion

Federico Marcolini¹, Giulio De Donato¹, Fabio Giulii Capponi¹, Maurizio Incurvati², Federico Caricchi¹ ¹Sapienza University of Rome, Italy; ²Management Center Innsbruck MCI, Austria

0596 Enhanced Torque Estimation in Variable Leakage Flux PMSM Combining High and Low Frequency Signal Injection

Diego F. Laborda¹, David Díaz Reigosa¹, Daniel Fernández¹, Kensuke Sasaki², Takashi Kato², Fernando Briz¹ ¹University of Oviedo, Spain; ²Nissan Motor Co., Ltd., Japan

1113 Design of an Axial Flux Machine with an Integrated Hydraulic Pump for Off-Highway Vehicle Electrification

Fnu Nishanth¹, Garrett Bohach², Md Minal Nahin², James Van de Ven², Eric L. Severson¹ ¹University of Wisconsin-Madison, United States; ²University of Minnesota, United States

0741 Demagnetization Performance Enhancement of Heavy Rare Earth Free Permanent Magnet Machines

Md Sariful Islam¹, Rajib Mikail², Iqbal Husain¹ ¹North Carolina State University, United States; ²ABB US Corporate Research Center, United States

0864 | High Voltage Direct Driven Wind Turbine Generator

Michela Diana, Sonja Tidblad Lundmark, Torbjörn Thiringer Chalmers University of Technology, Sweden

0376 Emulation of an Isolated Induction Generator under Unbalanced Conditions

Yupeng Liu, Mohammad A. Masadeh, Pragasen Pillay Concordia University, Canada

0786 Comparative Analysis of Different Halbach Array Structures in the Design Optimization of an In-Wheel Permanent Magnet Machine for Land Speed Racing

Guoyu Chu¹, Howard Lovatt², M.F. Rahman¹, Rukmi Dutta¹ ¹University of New South Wales, Australia; ²CSIRO, Australia

1404 | High Torque Density Spoke-Type Ferrite Permanent Magnet Synchronous Machine Assisted by Rare-Earth Magnets for Traction Applications

Zhiwei Zhang The Ohio State University, United States

1426 | Dual Three Phase Rare-Earth Free Spoke-Type Permanent Magnet Synchronous Traction Motor using Ferrite Magnets

Zhiwei Zhang The Ohio State University, United States

Virtual 2

Tuesday, October 13

11:00AM-11:30AM

P14 | Converters for Renewable Energy

Chairs: Gerry Moschopoulos, Qiang Wei

0375 Scalable Thirteen-Level Hybrid Multilevel Inverter using Reduced Components Abhinandan Routray, Shri Prakash Sonkar, Rajeev Kumar Singh, Ranjit Mahanty Indian Institute of Technology (BHU), India

0379 | Hybrid Modular Multilevel Converter with Self-Balancing Structure

Yaqian Zhang, Jianzhong Zhang, Zheng Xu, Fujin Deng, Jin Zhao Southeast University, China

1006 Evaluation of Modular AC Filter Building Blocks for Full SiC based Grid-Tied Three Phase Converters

Ripun Phukan¹, Sungjae Ohn¹, Dong Dong¹, Rolando Burgos¹, Gopal Mondal², Sebastian Nielebock² ¹Virginia Polytechnic Institute and State University, United States; ²Siemens Corporate Research, Germany **0839** DC/AC Voltage Sourced Converter with Auxiliary DC Port for Renewable Energy Applications Chatumal Perera, John Salmon, Gregory J. Kish University of Alberta, Canada

1503 Design for Reliability of SiC-MOSFET-Based 1500-V PV Inverters with Variable Gate Resistance Jinkui He, Ariya Sangwongwanich, Yongheng Yang, Francesco Iannuzzo *Aalborg University, Denmark*

0054 A New Switched-Capacitor based Boost Seven-Level ANPC (7L-ANPC) Boost Inverter Topology

Atif Iqbal¹, Marif Daula Siddique¹, Mohammed Al-Hitmi¹, Saad Mekhilef² ¹*Qatar University, Qatar;* ²*University of Malaya, Malaysia*

1160 | Design of a Non-Isolated Three-Switch Inverter for Renewable Energy Systems, featuring Simple Circuit, Continuous Output Current, Common Ground and Buck-Boost Operation

Ashraf Ali Khan¹, Shehab Ahmed², Usman Ali Khan³ ¹The University of British Columbia, Canada; ²King Abdullah University of Science and Technology, Saudi Arabia; ³Yonsei University, Korea

0950 Current Ripple Reduction for the Quasi-Z-Source Inverter with Modified Space-Vector PWM Strategy

Wenjie Liu, Yongheng Yang, Tamas Kerekes, Frede Blaabjerg Aalborg University, Denmark

0776 | A State-of-the-Art Strategy to Implement Nonlinear Model Predictive Controller with Non-Quadratic Piecewise Discontinuous Cost Index for Ocean Wave Energy Systems

Ali Shahbaz Haider¹, Ted K.A. Brekken¹, Alan McCall² ¹Oregon State University, United States; ²Ecomerit Technologies, LLC, United States

0858 SOH Diagnostic and Prognostic of High Energy Application by the Relationship of Health Indicators

Pyeong-Yeon Lee¹, SangUk Kwon¹, Deokhun Kang¹, SeungYun Han¹, Woonki Na², Jonghoon Kim¹ ¹Chungnam National University, Korea; ²California State University-Fresno, United States

1001 | Bi-Directional 3.3 kW On-Board Battery Charger

Tanya Gachovska, Gabriel Scarlatesu, Nikolay Radimov, Mahdi Tude Ranjbar Solantro Semiconductor Corp., Canada

1034 A New Configuration for Wind/Solar Water Pumping System based on a Doubly Fed Induction Generator

Zahra Mousavi¹, Roohollah Fadaeinedjad¹, Hojjatullah Moradi¹, Mohammadali Bagherzadeh¹, Gerry Moschopoulos² ¹Graduate University of Advanced Technology, Iran; ²Western University, Canada

0334 | Modified EPS Control with Magnetizing Current Injection to Achieve Full Load Range ZVS for Dual Active Bridge Converters

Liting Li¹, Guo Xu¹, Wenjing Xiong¹, Hanbing Dan¹, Yonglu Liu¹, Mei Su¹, Dong Liu² ¹Central South University, China; ²Aalborg University, Denmark Tech Program Schedule | Poster Sessions

Virtual 3

Tuesday, October 13

11:00AM-11:30AM

P15 | DC-AC Converters

Chairs: Suzan Eren, Dong Cao

0362 | Transformerless Active Isolation in Common-Ground Photovoltaic Microinverter Applications for Reduced Ground Leakage Currents

Clint Halsted, Somasundaram Essakiappan, Madhav Manjrekar University of North Carolina-Charlotte, United States

1011 Analysis and Control of Grid-Tied Quad-PV LLC Converter with MPPT

Sumana Ghosh, Reza Rezaii, Abdullah Alhatlani, Issa Batarseh University of Central Florida, United States

0623 Derivation of a Single-Phase Single-Stage Inverter based on Minimum Indirect Power

Diego Serrano, Regina Ramos, Edwin Peredo, Pedro Alou, Jesús A. Oliver, José A. Cobos Universidad Politécnica de Madrid, Spain

0383 A General Dead Time Compensation Method based on Current Ripple Prediction and Pulse Delay Measurement for Voltage Source Inverter

Zewei Shen, Dong Jiang, Jianan Chen, Zicheng Liu Huazhong University of Science and Technology, China

1551 Common Mode Voltage Cancellation using SHM-PAM for 3Phase Compact Multilevel Inverters

Mohammad Sharifzadeh, Mohammad Babaie, Gabriel Chouinard, Kamal Al-Haddad École de Technologie Supérieure, Canada

0622 | Three-Phase Hybrid Multi-Output Converter with Single DC and Multi AC Outputs for Hybrid Microgrid Application

Shri Prakash Sonkar, V.N. Lal, R.K. Singh Indian institute of Technology-Varanasi, India

0754 | Three-Phase DC Capacitor-Less Solid-State Variable Capacitor

Yunting Liu¹, Leon M. Tolbert¹, Fred Wang¹, Fang Z. Peng² ¹The University of Tennessee-Knoxville, United States; ²Florida State University, United States

0685 | Nine-Switch Current-Source Inverter-Fed Asymmetrical Six-Phase Machines based on Vector Space Decomposition

Ahmed Salem, Mehdi Narimani McMaster University, Canada

Virtual 4

Tuesday, October 13

11:00AM-11:30AM

P16 | Statistical Methods Applied to Power Electronics System Applications

Chairs: Burak Ozpineci, Osama Mohammad

1343 An Observer based Intrusion Detection Framework for Smart Inverters at the Grid-Edge

Zhen Zhang^{1,2}, Mitchell Easley¹, Mohsen Hosseinzadehtaher^{1,2}, George Amariucai¹, Mohammad B. Shadmand^{1,2}, Haitham Abu-Rub³

¹Kansas State University, United States; ²University of Illinois at Chicago, United States; ³Texas A&M University at Qatar, Qatar

0697 | A Growing Self-Organising Maps Implementation for Coherency Identification in a Power Electronics Dominated Power System

Gregory N. Baltas¹, Ngoc-Bao Lai², Leonardo Marin², Andres Tarraso², Pedro Rodriguez² ¹Universidad Loyola, Spain; ²Universitat Politecnica de Catalunya, Spain

0722 | State of Health Estimation of Lithium-Ion Batteries using Neuron Network and 1kHz Impedance Data

Zhiyong Xia, Jaber A. Abu Qahouq University of Alabama, United States

1174 A Machine Learning Clustering Algorithm for Sensorless Multilevel Converters

Faete J.T. Filho¹, Parker Zieg¹, Burak Ozpineci², Nicholas Hill¹, Leon M. Tolbert³ ¹East Carolina University, United States; ²Oak Ridge National Laboratory, United States; ³The University of Tennessee, United States

0270 | A Machine Learning Approach for Understanding Power Distribution System Congestion

Emin Ucer¹, Mithat Kisacikoglu¹, Ali Gurbuz², Shahinur Rahman¹, Murat Yuksel³ ¹The University of Alabama, United States; ²Mississippi State University, United States; ³University of Central Florida, United States

0123 Physical Design Automation for High-Density 3D Power Module Layout Synthesis and Optimization

Imam Al Razi, Quang Le, H. Alan Mantooth, Yarui Peng University of Arkansas, United States

1051 | Bridging Gaps in Paper Design Considering Impacts of Switching Speed and Power-Loop Layout

Ren Ren¹, Zhou Dong¹, Fred Wang^{1,2} ¹The University of Tennessee-Knoxville, United States; ²Oak Ridge National Laboratory, United States

1099 Short-Term Solar Irradiance Forecasting based on Multi-Branch Residual Network

Saeedeh Ziyabari, Liang Du, Saroj Biswas Temple University, United States

1560 | Medium Voltage Supply Directly to Data-Center-Servers using SiC-Based Single-Stage Converter with 20kW Experimental Results

Suvendu Samanta¹, Isaac Wong¹, Subhashish Bhattacharya¹, Birger Pahl² ¹North Carolina State University, United States; ²EATON, United States

Virtual 1

Tuesday, October 13

11:35AM-12:05PM

P17 | Electric Machines (Synchronous, Induction, Switched Reluctance, Flux-Switching)

Chairs: Andrea Cavagnino, Alireza Fatemi

1073 Design and Evaluation of a Power Hardware-in-the-Loop Machine Emulator

John Noon¹, He Song¹, Bo Wen¹, Igor Cvetkovic¹, Srdjan Srdic², Gernot Pammer², Rolando Burgos¹ ¹Virginia Polytechnic Institute and State University, United States; ²EGSTON Power Electronics GmbH, Austria

0359 Method of Expanding Operating Range for Three-Phase Series-End Winding Motor Drive

An Li, Dong Jiang, Xiangwen Sun, Zicheng Liu Huazhong University of Science and Technology, China

1297 Design and Construction of a Foil Winding Permanent Magnet Machine

Michael Rios, Giri Venkataramanan University of Wisconsin-Madison, United States

1415 Consequent Pole Toroidal Winding Dual Rotor Permanent Magnet Synchronous Machines Zhiwei Zhang

The Ohio State University, United States

0606 Study on Performance Improvement by Rotating Working Bar of Double-Cage Induction Motor

Dong-Ho Kim¹, Kwang Soo Kim², Ju Lee¹, In-Jun Yang³, Si-Woo Song³, Won-Ho Kim³ ¹Hanyang University, Korea; ²Halla University, Korea; ³Gachon University, Korea

0928 | Improved Rotor Bar Structure in High-Voltage High-Power Induction Motors to Eliminate Local thermal Spot and Avoid Broken Bar Faults

Haisen Zhao¹, Xinglan Guo¹, Xin Dai², Hassan H. Eldeeb³, Yang Zhan¹, Guorui Xu¹, Osama Mohammed³ ¹North China Electric Power University, China; ²Inner Mongolian Baotou Donghua Thermal Power Plant, China; ³Florida International University, United States

1443 | Modeling and Control of a 4-Pole/8-Pole Induction Motor for Smooth Torque Production during Electronic Pole Changing

Taohid Latif¹, Mohamed Zubair M. Jaffar², Iqbal Husain¹ ¹North Carolina State University, United States; ²FEV NA, Inc., United States

0083 | Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux

Habib Castro-Coronado, Jose Antonino-Daviu, Alfredo Quijano-Lopez, Vicente Fuster-Roig, Pedro Llovera-Segovia Universitat Politecnica de Valencia, Spain

0570 Optimum Design of Line-Start Permanent-Magnet Synchronous Motor using Mathematical Method

Mousalreza Faramarzi Palangar¹, Amin Mahmoudi¹, Solmaz Kahourzade², Wen L. Soong³ ¹Flinders University, Australia; ²University of South Australia, Australia; ³University of Adelaide, Australia

0405 | Research on Vibration Reduction of Switched Reluctance Motor

Ying Xie, Zexin Ma, Yuwen Xu, William Cai, Zhaoyang Ning, Shengming Hu Harbin University of Science and Technology, China

1500 Alternative Methods for Electric Machine Rated Load Temperature Tests

Emmanuel Agamloh¹, Silvio Vaschetto², Andrea Cavagnino², Annette von Jouanne¹, Alexandre Yokochi¹ ¹Baylor University, United States; ²Politecnico di Torino, Italy

0532 | Sinusoidal Shaped Surface Permanent Magnet Motor using Cold Spray Additive Manufacturing

Sumeet Singh, Pragasen Pillay Concordia University, Canada

Virtual 2

Tuesday, October 13

11:35AM-12:05PM

P18 | Controls in Alternative Energy Applications

Chairs: Qiang Wei, Mehdi Narimani

1541 A Novel Decentralized Adaptive Droop Control Technique for DC Microgrids based on Integrated Load Condition Processing

Mohammad Noor Bin Shaheed, Yilmaz Sozer, Sifat Chowdhury, J. Alex De Abreu-Garcia The University of Akron, United States

1266 Reviews on Inertia Emulation Technology with Power Electronics

Shimiao Chen, Hua Han, Xinyu Chen, Yao Sun, Xiaochao Hou *Central South University, China*

0350 Sequence-Impedance-Based Stability Comparison between VSGs With and Without Inner Loops Control

Yang Peng, Yue Wang, Yonghui Liu, Hang Liu Xi'an Jiaotong University, China

0303 Reactive Power Modulation Strategy of a Single-Stage Buck-Boost-Type Inverter

Ken King Man Siu, Carl Ngai Man Ho University of Manitoba, Canada

0285 Optimal RSC Control for Loss Reduction in Wind Turbine Driven DFIG-Grid System

Sambasivaiah Puchalapalli, Bhim Singh Indian Institute of Technology Delhi, India

0687 Ground Leakage Current in Modified Three-Phase Current Source Inverters Depending on Power Semiconductors Parasitic Capacitances

Giovanni Migliazza, Emilio Carfagna, Fabio Bernardi, Emilio Lorenzani University of Modena and Reggio Emilia, Italy

0101 Constant Power Generation Method for Grid-Connected Photovoltaic Systems with Fast Response under Dynamic Irradiance Condition

Hyoung-Kyu Yang, Zeeshan Aleem, Junhyuk Lee, Jung-Wook Park Yonsei University, Korea

0438 Online Condition Monitoring of Photovoltaic (PV) Cells by Implementing Electrical Impedance Spectroscopy using a Switch-Mode DC-DC Converter

Linda Shelembe, Paul Barendse University of Cape Town, South Africa

1201 | Risk Assessment of Smart Buildings Equipped with Solar Generation using Information Gap Decision Theory

Sima Aznavi¹, Poria Fajri¹, Eric M. Wilcox², Mohammad B. Shadmand³ ¹University of Nevada-Reno, United States; ²Desert Research Institute, United States; ³University of Illinois at Chicago, United States

1272 Coordinated Power Balance Scheme for a Wind-to-Hydrogen Set in Standalone Power Systems

Echezona Ezeodili, Jinho Kim, Eduard Muljadi, Robert M. Nelms Auburn University, United States

0206 | Flux Adaptive RelSync Motor Driven Single Stage Photovoltaic Water Pumping System

Anshul Varshney, Utkarsh Sharma, Bhim Singh Indian Institute of Technology Delhi, India

0929 Design and Implementation of Lithium-Ion Battery based Smart Solar Powered Street Light System

Immad Shams¹, Prashant Shrivastava¹, Kok Soon Tey¹, Saad Mekhilef^{1,2} ¹University of Malaya, Malaysia; ²Swinburne University of Technology, Australia Tech Program Schedule | Poster Sessions

Virtual 3

Tuesday, October 13

11:35AM-12:05PM

P19 | Multilevel Converters (Topology, Modulation, Control)

Chairs: Seung-Hwan Lee, Richard Lukaszewski

1575 Optimized DV/DT Filter Design for SiC based Modular Multilevel Converters

Xiao Li, Jianyu Pan, Ziwei Ke, Rui Liu, Junchong Fan, Yue Zhang, Boxue Hu, Risha Na, Longya Xu, Jin Wang The Ohio State University, United States

1277 | Three-Phase AC-DC-AC Converter with Shared Legs and Floating H-Bridges

Alan S. Felinto, Cursino B. Jacobina Federal University of Campina Grande, Brazil

0315 Model Predictive Control of 5L-ANPC Converters with Level-Shifted Pulse-Width-Modulation

Dehong Zhou¹, Zhongyi Quan², Yunwei (Ryan) Li² ¹University of Electronic Science and Technology of China, China; ²University of Alberta, Canada

1220 Dual Vienna Rectifiers with a Single DC-Link for Wind Energy Conversion System Applications

Amanda P. Monteiro¹, Cursino B. Jacobina¹, Filipe A.C. Bahia², Reuben P.R. Sousa¹ ¹Federal University of Campina Grande, Brazil;²Federal University of Bahia, Brazil

1228 | Single-Phase AC-DC-AC Multilevel Converter using High-Frequency Link to Improve Power Quality

Rodrigo P. de Lacerda¹, Cursino B. Jacobina¹, Edgard L.L. Fabricio², Alan Santana Felinto¹ ¹Federal University of Campina Grande, Brazil; ²Federal Institute of Paraíba, Brazil

1278 | Full Power Range Seamless Control of Three-Phase Unidirectional Vienna Rectifier including Partial DCM/CCM Operation with Low Harmonic Current Distortion even under Highly Distorted Grid

Massimiliano Biason¹, Roberto Petrella¹, Sandro Calligaro², Mattia Morandin³, Marco Zordan³ ¹University of Udine, Italy; ²Free University of Bozen, Italy; ³CAREL Industries s.p.a., Italy

0453 A Novel Voltage Balancing Strategy for Four-Level Hybrid-Clamped Converters under Selective Harmonic Elimination PWM

Mingzhe Wu¹, Hao Tian¹, Yun Wei Li¹, Kui Wang² ¹University of Alberta, Canada; ²Tsinghua University, China

0434 | The Active Gate Driver for Switching Loss Reduction of Inverter

ByongJo Hyon, Joon-Sung Park, Jin-Hong Kim Korea Electronics Technology Institute, Korea

0635 | A Novel Hybrid Modulation for Photovoltaic Three-Level T-Type Inverter to Simultaneously Eliminate Neutral-Point Voltage Ripple and Interact with Maximum Power Point Tracking Process

Mohammadreza Lak, Bing-Rong Chuang, Ting-Lien Wu, Tzung-Lin Lee National Sun Yat-Sen University, Taiwan

1525 Optimal Selection of the Voltage Modulation Strategy for an Open Winding Multilevel Inverter

A. Testa¹, S. Foti¹, S. De Caro¹, L.D. Tornello², G. Scelba², G. Scarcella² ¹University of Messina, Italy; ²University of Catania, Italy

Virtual 4

Tuesday, October 13

11:35AM-12:05PM

P20 | Grid Interactive Converters

Chairs: Dongbo Zhao, Pedro Rodriguez

0718 Application of Model Predictive Pulse Pattern Control to Control a PMSM

Ageda Guerra¹, Roberto García Rochín, Patrick W. Cross² ¹John Deere, Mexico; ²John Deere, United States

0201 | A Fixed-Frequency Synchronous Boost Converter based on Adaptive On-Time Control with a New Reverse Phase Ripple Injection Compensation

Dam Yun, Haneul Kim, Dongwoo Baek, Sanglk Cho, Jehyung Yoon, Jungbong Lee Samsung Electronics, Korea

0187 | Optimal Design of Control Strategy for Full-Bridge LLC Converter

Aiyun Zhu, Yundong Ma, Zisen Liu, Huijun Lu, Fuchun Zhang Nanjing University of Aeronautics and Astronautics, China

1519 Virtual Impedance based Control Scheme for Stability Emulation of Grid-Connected Converters

Jiashi Wang, Ke Ma Shanghai Jiao Tong University, China

1261 | LCOE Design Optimization using Genetic Algorithm with Improved Component Models for Medium-Voltage Transformerless PV Inverters

Kyle J. Goodrick¹, Gab-Su Seo², Satyaki Mukherjee¹, Jinia Roy², Rahul Mallik³, Branko Majmunovic¹, Soham Dutta³, Dragan Maksimovic¹, Brian Johnson³

¹University of Colorado-Boulder, United States; ²National Renewable Energy Laboratory, United States; ³University of Washington, United States

1323 Optimization and Design of a High-Voltage Supply for Electrostatic Precipitators

Xing Wei¹, Zhan Shen², Yuyuan Ye³, Jingwen Leng¹, Zhike Xu¹, Long Jin¹ ¹Southeast University, China; ²Aalborg University, Denmark; ³State Grid Jiangsu Electric Power Co., Ltd., China

0573 A Dual-Objective Modulated Model Predictive Control Scheme for the Point-of-Load Inverter in DC Microgrid with Dichotomy Algorithm

Jinsong He¹, Xin Zhang² ¹Nanyang Technological University, Singapore; ²Zhejiang University, China

0640 Optimization of a SiC MOSFET Behavioural Circuit Model by using a Multi-Objective Genetic Algorithm

Gaetano Bazzano¹, Alessandra Raffa¹, Santi Agatino Rizzo², Nunzio Salerno², Giovanni Susinni², PierPaolo Veneziano¹ ¹STMicroelectronics, Italy; ²University of Catania, Italy

0450 | Development of 3-Phase Current-Fed Dual Active Bridge Converter for Bi-Directional Battery Charger Application

Yong-Su Noh, Dongmyoung Joo, Byong Jo Hyon, Joon Sung Park, Jin-Hong Kim, Jun-Hyuk Choi Korea Electronics Technology Institute, Korea

0122 | Passivity-Based Parameter Design of Passive Power Filter for the Grid-Current-Controlled VSC

Jiancheng Zhao, Chuan Xie, Kai Li University of Electronic Science and Technology of China, China

1111 Novel Modulation Strategy to Eliminate Device Overvoltage Stress and Enable True ZVS Operation in the Soft-Switching Solid-State Transformer

Mickael J. Mauger, Prasad Kandula, Deepak Divan Georgia Institute of Technology, United States

1609 Three-Phase Unified Power Quality Conditioner based on H-Bridge and High-Frequency Link

Maxsuel F. Cunha, Cursino B. Jacobina, Alan S. Felinto *Federal University of Campina Grande, Brazil*

1102 | A Plug-and-Play Design Suite of Converters for the Electric Grid

Michael Starke¹, Pankaj Bhowmik, Steven Campbell, Madhu Chinthavali, Bailu Xiao, Radha Sree Krishna Moorthy, Benjamin Dean, Jongchan Choi

¹Oak Ridge National Laboratory, United States; ²The University of Tennessee, United States

0758 Decoupling Capacitor Design for Multi-Inverter based Grid Emulator System

Yunting Liu, Haiguo Li, Yiwei Ma, Jingxin Wang, Leon M. Tolbert, Fred Wang, Kevin L. Tomsovic *The University of Tennessee-Knoxville, United States*

Virtual 1

Tuesday, October 13

12:10PM-12:40PM

P21 | New Technologies, Sensors, Reliability and Testing for Electric Drives

Chairs: Mahesh Swamy, Jul-Ki Seok

0277 | Four-Module Three-Phase Permanent-Magnet Synchronous Motor based PWM Modulation Strategy for Suppressing Vibration and Common Mode Current

Kang Liu¹, Zicheng Liu¹, Dong Jiang¹, Qiyuan Wang¹, Zhongxiang He² ¹Huazhong University of Science and Technology, China; ²Wuhan Institute of Marine Electric Propulsion, China

0526 A Dual Modular Multilevel Converter with High-Frequency Circulating Current Injection for MV Open-End Stator Winding Machine Drives

Mohamed S. Diab¹, Xibo Yuan¹, Barry W. Williams² ¹University of Bristol, United Kingdom; ²University of Strathclyde, United Kingdom

0628 | Magnetic Resolver using Hall-Effect Sensors

Ye Gu Kang, Diego F. Laborda, Daniel Fernández, David Reigosa, Fernando Briz University of Oviedo, Spain

0698 | Induction Machine Emulation under Asymmetric Grid Faults

Gayatri Tanuku, Pragasen Pillay Concordia University, Canada

0933 | Gigahertz Current Measurement for Wide Band-Gap Devices

Luke Shillaber, Li Ran, Yanfeng Shen, Teng Long University of Cambridge, United Kingdom

1074 | Three-Phase Bidirectional-Flyback Differential-Inverter for Synchronous Electrostatic Machines

Peter Killeen, Daniel C. Ludois University of Wisconsin-Madison, United States

1180 Integrated Motor Drive using Soft-Switching Current-Source Inverters with SiC- and GaN-Based Bidirectional Switches

Hang Dai, Renato A. Torres, Woongkul Lee, Thomas M. Jahns, Bulent Sarlioglu *University of Wisconsin-Madison, United States*

1246 | Synchronous Frame Current Estimation Inaccuracies in Permanent Magnet Synchronous Motor Drives

Prerit Pramod Nexteer Automotive Corp., United States

1262 | Evaluation of Sensorless Techniques for Surface Permanent-Magnet Integrated Motor Drive using Current-Source Inverter

Renato A. Torres, Hang Dai, Woongkul Lee, Thomas M. Jahns, Bulent Sarlioglu University of Wisconsin-Madison, United States

1418 A Novel Model based Development of a Motor Emulator for Rapid Testing of Electric Drives

Visweshwar Chandrasekaran¹, Benjamin Sykora¹, Sanchit Mishra², Ned Mohan² ¹Trane Technologies, United States; ²University of Minnesota, United States

1615 | High-Frequency Evaluation of Two-Level Voltage-Source and Current-Source Inverters with Different Output Cables

Hang Dai, Renato A. Torres, Woongkul Lee, Thomas M. Jahns, Bulent Sarlioglu *University of Wisconsin-Madison, United States*

1196 Symmetric DQ Control of Saturated Salient AC Machines – Utilizing Targeted Time Constant Virtual Resistance and Complex Vector Flux-Linkage Regulation

Caleb W. Secrest, Dwarakanath V. Simili, Yochan Son BorgWarner Inc., United States

0617 Input-Output Feedback Linearization Control of a Linear Induction Motor Taking into Consideration its Dynamic End-Effects and Iron Losses

Angelo Accetta¹, Maurizio Cirrincione², Filippo D'Ippolito³, Marcello Pucci¹, Antonino Sferlazza³ ¹National Research Council of Italy, Italy; ²University of the South Pacific, Fiji; ³University of Palermo, Italy

1618 Stator Resistance Estimation using DC Injection Robust to Inverter Nonlinearity in Induction Motors Joohyun Lee, Jiwon Yoo, Seung-Ki Sul

Seoul National University, Korea

Virtual 2

Tuesday, October 13

12:10PM-12:40PM

P22 | Microgrid Applications

Chairs: Jingxin Wang, Yaosuo Xue

1547 Control Hardware-in-the-Loop for Voltage Controlled Inverters with Unbalanced and Non-Linear Loads in Stand-Alone Photovoltaic (PV) Islanded Microgrids

Mehmet Emin Akdogan, Sara Ahmed The University of Texas at San Antonio, United States

0564 An Intelligent Fuzzy Control Approach for a Back-Pressure Autonomous Industrial Microgrid

Rahmat Khezri¹, Amin Mahmoudi¹, Sajjad Golshannavaz² ¹Flinders University, Australia, Australia; ²Urmia University, Iran

0410 Distributed Control and Dynamic Optimization of a Microgrid

Jameel Ahmad¹, Muhammad Aqil Aslam², Muhammad Tahir², Sudip K. Mazumder³ ¹University of Management and Technology-Lahore, Pakistan; ²University of Engineering and Technology-Lahore, Pakistan; ³University of Illinois-Chicago, United States

1162 Influence of PLL Parameters on Small-Signal Stability of Microgrids with Synchronous Generators

Diana Patricia Morán-Río¹, Javier Roldán-Pérez¹, Milan Prodanovic¹, Aurelio García-Cerrada² ¹IMDEA Energy Institute, Spain; ²Comillas Pontifical University, Spain

1464 | Design Optimization of the Snubber Circuit for Three-Level NPC Converter Pole for Hard Switching Application

Sanket Parashar, Nithin Kolli, Raj Kumar Kokkonda, Subhashish Bhattacharya North Carolina State University, United States

0742 Control of a Grid-Tied Multiport Inverter for a Microgrid with Renewable Energy Sources

Dianzhi Yu, Xia Du, Jianwu Zeng, Zhaoxia Yang Minnesota State University-Mankato, United States

0222 A Modular Generic Microgrid Controller Adaptive to Different Compositions

Chu Sun¹, Syed Qaseem Ali², Geza Joos¹, Francois Bouffard¹ ¹*McGill University, Canada;* ²*Opal-RT Technologies Inc., Canada*

0124 | A Real-Time De-Risked Emulation based Testing Platform for AC Microgrids

A.S. Vijay, Suryanarayana Doolla, Mukul C. Chandorkar Indian Institute of Technology-Bombay, India

Virtual 3

Tuesday, October 13

12:10PM-12:40PM

P23 | Power Quality, Reliability, Diagnostics and Fault Analysis

Chairs: Yue Cao, Malik Elbuluk

1284 Analysis of AC-DC-AC Converter with Shared Legs under Unbalanced Conditions

Alan S. Felinto, Cursino B. Jacobina Federal University of Campina Grande, Brazil

1021 Asymmetric Voltage Sag Compensation Capability of Dual Voltage Source Inverter

Jefferson R.P. de Assis¹, Darlan A. Fernandes¹, Fabiano F. Costa², P.C. Ribeiro¹, Rogério G. de Almeida¹ ¹Federal University of Paraíba, Brazil; ²Federal University of Bahia, Brazil

0131 | Series Arc Fault Detection and Localization in DC Distribution based on Master Controller

Vu Le¹, Xiu Yao¹, Chad Miller², Tsao-Bang Hung² ¹State University of New York at Buffalo, United States; ²Wright Patterson Air Force Base, United States

1334 An Ultra-Fast and Non-Invasive Short Circuit Protection Strategy for a WBG Power Electronics Converter with Multiple Half-Bridge Legs

Chondon Roy, Namwon Kim, Hossein Niakan, Ali Parsa Sirat, Babak Parkhideh University of North Carolina at Charlotte, United States

1454 Open-Circuit Fault Reconfiguration of Multi-Phase Interleaved DC-DC Converter

Abbas Hassan, Ali Bazzi American University of Beirut, Lebanon

0849 Analytical Modelling and Resilient Operation Design for Capacitor Voltage Ascent in MMC Distributed Control System with Communication Interruption

Shunfeng Yang¹, Haiyu Wang¹, Haiyu Chen², Wensheng Song² ¹Southwest Jiaotong University, China; ²Xi'an Jiaotong University, China

0200 A New Procedure for Switched Mode Power Supplies Development by using Virtual Tests

Jack Hu, Srinivas Gude Delta Electronics, Inc., Taiwan

0393 A Novel In Situ IGBT and FWD Junction Temperature Estimation Technique for IGBT Module based on On-State Voltage Drop Measurement

Yanyong Yang, Pinjia Zhang Tsinghua University, China

0306 Diagnosis of Power Device Failures using Discrete Fourier Transform for DC-AC Flying Capacitor Multilevel Converters

Ruqiang Zheng¹, Xin Yin¹, Sai Tang¹, Chao Zhang¹, Daming Wang¹, Jun Wang¹, Z. John Shen², Zishun Peng¹ ¹Hunan University, China; ²Illinois Institute of Technology, United States

1136 Measure Theory-Based approach for Remaining Useful Lifetime Prediction in Power Converters

Amin Rahnama Sadat, Harish Sarma Krishnamoorthy University of Houston, United States

0300 Energy-Based Stabilizing Controllers for DC-DC Converters Feeding Constant Power Loads

C.A. Villarreal-Hernandez¹, J. Loranca-Coutino¹, O.F. Ruiz-Martinez², J.C. Mayo-Maldonado¹, J.E. Valdez-Resendiz¹, J.C. Rosas-Caro², G. Escobar¹, Daniel Guillen¹ ¹Tecnologico de Monterrey, Mexico; ²Universidad Panamericana, Mexico

Virtual 4

Tuesday, October 13

12:10PM-12:40PM

P24 | Converter Control and Modeling 1

Chairs: Jin Tan, Hanchao Liu

0765 | A GaN-Based CRM Totem-Pole PFC Converter with Fast Dynamic Response and Noise Immunity for a Multi-Receiver WPT System

Jingjing Sun, Jie Li, Daniel J. Costinett, Leon M. Tolbert The University of Tennessee-Knoxville, United States

1245 Operation of a Three-Phase Standalone Inverter with Online Parameter Update by Instantaneous Charge Transfer Estimation

Vikram Roy Chowdhury, Jonathan W. Kimball Missouri University of Science and Technology, United States

0755 | PWM and PFM Hybrid Modulation Scheme for Dual-Input LLC Resonant Converter

Xi Chen, Issa Batarseh University of Central Florida, United States

1428 Transient Mitigation in Mode Transitions for Composite DC-DC Converters

Aritra Ghosh, Vivek Sankaranarayanan, Robert W. Erickson University of Colorado-Boulder, United States

0292 Predictive Zero-Sequence Control of Parallel Three-Phase Active Rectifiers

Luca Tarisciotti¹, Claudio Burgos², Cristian Garcia³, Jose Rodriguez¹ ¹Universidad Andres Bello, Chile; ²University of Nottingham, United Kingdom; ³Universidad de Talca, Chile

0795 | A Novel Control Method for a Primary Triple Bridges Dual Active Bridge DC-DC Converter with Minimum RMS Current Optimization

Deliang Chen¹, Junjun Deng¹, Wenbo Wang¹, Zhenpo Wang¹, Shuo Wang¹, David G. Dorrell² ¹Beijing Institute of Technology, China; ²University of Witwatersrand, South Africa

1506 Analytical Control System Synthesis for Dual-Loop Cascaded Stationary Frame Voltage Regulators

H. Siraj¹, B.P. McGrath¹, I.U. Nutkani¹, Y. Liao², X. Wang² ¹*RMIT University, Australia;*²*Aalborg University, Denmark*

0387 A Novel SVPWM Method for NPC Three-Level Interleaved H-Bridge Inverter

Weichao Li, Jinyang Han, Liang Zhou, Chen Deng, Ming Yan National Key Laboratory for Vessel Integrated Power System Technology, China

1063 Adaptive Sliding Mode Control based on a Hyperbolic Tangent Function for DC-to-DC Buck-Boost Power Converter

J. Linares-Flores, R. Heredia-Barba, O. Castro-Heredia, G. Curiel-Olivares, J.A. Juárez-Abad *Universidad Tecnológica de la Mixteca, Mexico*

0626 | Input Shaping Control of Paralleled DC-DC Converters

Shishir Patel, Wayne Weaver Michigan Technological University, United States

0430 Operation and Control of Converters having Integrated Capacitor Blocked Transistor Cells

Jianghui Yu, Rolando Burgos Virginia Polytechnic Institute and State University, United States

1342 A CCM based Average Current Control Technique for Chopper Integrated Single-Phase ANPC Inverter to Minimize Voltage Ripple

Jagath Vallabhai Missula, Ravindranath Adda, Praveen Tripathy Indian Institute of Technology Guwahati, India

Virtual 1

Tuesday, October 13

1:30PM-2:00PM

P25 | Control of Electric Drives

Chairs: Luca Zarri, Behrooz Mirafzal

0316 A Constant Current based Interior Permanent Magnet (IPM) Synchronous Motor Drive Control Strategy

Yunpeng Si, Yifu Liu, Chunhui Liu, Zhengda Zhang, Mengzhi Wang, Qin Lei Arizona State University, United States

0353 Overmodulation Strategy for Inverters with a Single DC-Link Current Sensor

Bumun Jung, Taeyeon Lee, Kwanghee Nam POSTECH, Korea

0445 | Reduction of Voltage Harmonics in an Open-End Winding Induction Motor Driven by a Dual-Inverter with Floating-Capacitor in the Low-Speed Region

Akihito Mizukoshi, Hitoshi Haga Nagaoka University of Technology, Japan

0468 | Low-Speed Operation of a Motor Drive System using Dual Inverters to Reduce Input Current Harmonics

Ren Okumura, Hitoshi Haga Nagaoka University of Technology, Japan

0483 Growing Neural Gas-Based Maximum Torque per Ampere (MTPA) Technique for SynRMs

Angelo Accetta¹, Maurizio Cirrincione², Maria Carmela Di Piazza¹, Giuseppe La Tona¹, Massimiliano Luna¹, Marcello Pucci¹ ¹National Research Council of Italy, Italy; ²University of South Pacific, Fiji

0496 | Adaptive PI Parameter of Flux-Weakening Controller based on Voltage Feedback for Model Predictive Control of SPMSM

Yongchang Zhang¹, Jialin Jin¹, Hao Jiang¹, Dong Jiang² ¹North China University of Technology, China; ²Huazhong University of Science and Technology, China

0523 | Model Predictive Saturation Controller-Based Direct Torque Control of Permanent-Magnet Synchronous Machines

Matthew Penne¹, Wei Qiao¹, Liyan Qu¹, Lizhi Qu¹, Jiyao Wang², Silong Li² ¹University of Nebraska-Lincoln, United States; ²Ford Motor Co., United States

0669 | Development of SiC-Based Motor Drive using Typhoon HIL 402 as System-Level Controller

Ryan Collin, Madeline Stephens, Annette von Jouanne *Baylor University, United States*

0780 An Improved Virtual Signal Injection Control of MTPA for an IPMSM

Hao Jiang, Yongchang Zhang, Haitao Yang North China University of Technology, China

0906 Model Predictive Flux Control based on Synchronous Pulse-Width Modulation

Haitao Yang¹, Peng Huang¹, Yongchang Zhang¹, Jianguo Zhu² ¹North China University of Technology, China; ²The University of Sydney, Australia

1088 Generalized Optimal SVPWM for the Switched-Capacitor Voltage Boost Converter

Shukai Wang, Ameer Janabi, Bingsen Wang Michigan State University, United States

1331 | Precise Rotor Speed Measurement Method with Sinusoidal Coded Gearwheel Encoder for Spindle Motor Drive

Jaehong Kim¹, Muhammad Usama¹, Kwanghee Nam² ¹Chosun University, Korea; ²POSTECH, Korea

0033 Motor Bearing Current Characterization in SiC-Based Variable Frequency Drive Applications

Annette von Jouanne, Ryan Collin, Madeline Stephens, Yu Miao, Brian Thayil, Caleb Li, Emmanuel Agamloh, Alex Yokochi Baylor University, United States

0078 | Energy Efficiency Performance Evaluation of Direct Torque and Flux Control in Induction Machines Driven by Adjustable Speed Drives

Kevin Lee, Jimmy Qi *Eaton Corp., United States*

0130 A Unique Way to Address Component Breakdown Guidelines Set in UL 61800-5-1 for Variable Frequency Drives

Mahesh Swamy¹, Nathan Seipel² ¹IEEE, United States; ²Yaskawa America, Inc., United States

0165 | A V/Hz based Maximum Torque per Volt Control in Flux-Weakening Region for Interior Permanent Magnet Synchronous Motors

Zhihao Song¹, Wenxi Yao¹, Kevin Lee² ¹Zhejiang University, China; ²Eaton Corp., United States

Virtual 2

Tuesday, October 13

1:30PM-2:00PM

P26 | Distributed Energy Resources and Utility Interactions

Chairs: Lina He, Yaosuo Xue

1210 An Intelligent Overcurrent Protection Algorithm of Distribution Systems with Inverter based Distributed Energy Resources

Lina He¹, Shuaiang Rong¹, Chengwei Liu² ¹University of Illinois at Chicago, United States; ²Huazhong University of Science and Technology, China

0132 | Group-Based Control for Domestic Electric Water Heaters using Quantum-Inspired Evolutionary Algorithm

Sheng Xiang¹, Liuchen Chang¹, Bo Cao¹, Yigang He² ¹University of New Brunswick, Canada; ²Hefei University of Technology, China

0569 | Two-Stage Optimal Sizing of Standalone Hybrid Electricity Systems with Time-of-Use Incentive Demand Response

Rahmat Khezri¹, Amin Mahmoudi¹, Mohammed H. Haque² ¹Flinders University, Australia; ²University of South Australia, Australia

0090 Autonomous Control Strategy for Reliable OLTC Operation under PV Power Fluctuation with Effective Voltage Regulation

Ali Elrayyah, Nand Kishor Singh Hamad Bin Khalifa University, Qatar

1218 Virtual Synchronous Generator with Limited Current – Impact on System Transient Stability and its Mitigation

Yiwei Ma¹, Fred Wang^{1,2}, Leon M. Tolbert^{1,2} ¹The University of Tennessee, United States; ²Oak Ridge National Laboratory, United States

0690 Simple Tuning Method of Virtual Synchronous Generators Reactive Control

Fabio Mandrile, Enrico Carpaneto, Eric Armando, Radu Bojoi Politecnico di Torino, Italy

0236 A New Method to Improve the Transient Performance of Virtual Synchronous Generator with the Extended Virtual Impedance

Zhengmao Yang, Shuai Lu Chongqing University, China

1434 Analysis of Output Impedance Constraints for Grid-Connected Virtual Synchronous Generators Considering Large-Disturbance Stability

Mingxuan Li, Yue Wang, Sirui Shu, Yonghui Liu, Yang Peng Xi'an Jiaotong University, China

0577 VSS-DNSE Adaptive Control Algorithm for Enhancing Performance of PV-Grid Interfaced System

Kripa Tiwari, Seema Kewat, Bhim Singh, Gaurav Modi Indian Institute of Technology-Delhi, India

1280 On Stability of Hybrid Power Ramp Rate Control for High Photovoltaic Penetrated Grid

Silvanus D'Silva¹, Ahmad Khan^{1,2}, Muhammad Farooq^{1,2}, Mohammad B. Shadmand^{1,2}, Haitham Abu-Rub³ ¹Kansas State University, United States; ²University of Illinois at Chicago, United States; ³Texas A&M University at Qatar, Qatar

Virtual 3

Tuesday, October 13

1:30PM-2:00PM

P27 | Wide-Bandgap Semiconductors

Chairs: Cong Li, Francesco lannuzzo

0146 An Adaptive Driving Signals Delay Control for Voltage Balancing of Series-Connected SiC MOSFETs

Min Zhao, Hua Lin, Tao Wang Huazhong University of Science and Technology, China

0256 An Active Clamping Control Method for DC Solid State Circuit Breaker based on Cascaded SiC JFETs Hong Duan¹, Wei Wang¹, Dong He², Zhikang Shuai¹, Xue Yang¹, Z. John Shen³

¹Hunan University, China; ²Hunan University of Technology, China; ³Illinois Institute of Technology, United States

0477 A Step-by-Step Modelling approach for SiC MOSFETs Half-Bridge Modules Considering Temperature Characteristics

Peng Yang, Wenlong Ming, Jun Liang Cardiff University, United Kingdom

0170 | Analytical Modeling of SiC MOSFETs Short-Circuit Behavior Considering Parasitic Parameters

Pengfei Xiang, Ruixiang Hao, Xiaojie You, Siwei Liu, Honglin Jiao, Fang Li Beijing Jiaotong University, China

1055 Analysis and Gate Driver Design Considerations of 10 kV SiC MOSFETs under Flashover Fault Due to Insulation Failure

Xingxuan Huang¹, Shiqi Ji¹, Dingrui Li¹, Cheng Nie¹, Leon M. Tolbert^{1,2}, Fred Wang^{1,2}, William Giewont³ ¹The University of Tennessee-Knoxville, United States; ²Oak Ridge National Laboratory, United States; ³EPC Power, United States

0373 | In-Circuit Shoot-through-Based Characterization of SiC MOSFET TSEP Curves for Junction Temperature Estimation

Alessandro Soldati, Roberto Menozzi, Carlo Concari University of Parma, Italy

0731 | A GaN and Si Hybrid Solution for 48V-12V Automotive DC-DC Application

Lei Kou, Juncheng Lu GaN Systems Inc., Canada

1400 | Current Distribution Monitoring of Paralleled GaN HEMTs

Hossein Niakan, Ali Parsa Sirat, Babak Parkhideh University of North Carolina at Charlotte, United States

0652 Body Diode Reverse Recovery Effects on SiC MOSFET Half-Bridge Converters

Mario Pulvirenti¹, Angelo G. Sciacca¹, Luciano Salvo¹, Massimo Nania¹, Giacomo Scelba², Giuseppe Scarcella² ¹STMicroelectronics, Italy; ²University of Catania, Italy

0341 | Turn-On Performance Comparison of SiC Single-Driver Module (SDM) and Multi-Driver Module (MDM)

Pengkun Liu¹, Ruiyang Yu¹, Alex Q. Huang¹, Johan Strydom², Stephanie W. Butler² ¹The University of Texas-Austin, United States; ²Texas Instruments Inc., United States

Virtual 4

Tuesday, October 13

1:30PM-2:00PM

P28 | Converter Control and Modeling 2

Chairs: Liang Du, Zhiqiang (Jack) Wang

0636 Observers for Discrete-Time Current Control of Converters Equipped with an LCL Filter

F.M. Mahafugur Rahman¹, Jarno Kukkola¹, Ville Pirsto¹, Mikko Routimo^{1,2}, Marko Hinkkanen¹ ¹Aalto University, Finland; ²ABB Drives, Finland

0514 Control Strategies Generation Mechanism for LLC Resonant Converter

Yuqi Wei¹, Quanming Luo², Dereje Woldegiorgis², Alan Mantooth¹ ¹University of Arkansas, United States; ²Chongging University, China

0394 Soft-Switching Auxiliary Current Control for Faster Load Transient Response of Buck Converter

Dongwook Kim¹, Myeongjae Hong², Jongun Baek¹, Jisu Lee¹, Joonho Shin¹, Jong-Won Shin¹ ¹Chung-Ang University, Korea; ²Samsung, Korea

0198 | H-Bridge MMCs with Symmetrical Half-Bridge Submodules

Jingyang Fang¹, Zhongxi Li¹, Stefan M. Goetz¹, Shunfeng Yang², Haiyu Wang² ¹Duke University, United States; ²Southwest Jiaotong University, China

0278 Modular Multilevel Converter Device-Level Loss Balancing Control for Better Lifetime

Huan Qiu, Jinyu Wang, Yi Tang Nanyang Technological University, Singapore

0771 | Finite Control Set – Model Predictive Control Applied to Dual-Converter-Based Rectifiers

Victor F.M.B. Melo, Ruan C.V. dos Santos, Gleice M. da Silva Rodrigues, Nady Rocha, Edison R.C. da Silva *Federal University of Paraíba, Brazil*

0400 A Simplified Modulated Model Predictive Control for Direct Matrix Converter

Xifei Liu, Xin Yin, Zhong Zeng, Sai Tang, Jun Wang Hunan University, China

0836 Computational Cost Efficient Model of Losses for Multi-Port Active-Bridge Converters

Soleiman Galeshi, David Frey, Yves Lembeye Universite Grenoble Alpes, CNRS, France

0181 A Constant Current Digital Control Method for Primary-Side Regulation Active-Clamp Flyback Converter

Chong Wang, Xiang Zhang, Daying Sun, Wenhua Gu Nanjing University of Science and Technology, China

0535 | Development of a Two-Level VSC based DC Impedance Measurement Unit

Le Kong¹, Nattapat Praisuwanna¹, Liang Qiao¹, Fred Wang^{1,2} ¹The University of Tennessee-Knoxville, United States; ²Oak Ridge National Laboratory; United States

0999 DC Link Voltage Balancing of the Active Front-End for the Extreme Fast Charging Stations

Amirhossein Moeini, Sai Hemanth Kankanala, Jonathan W. Kimball Missouri University of Science and Technology, United States

0188 Small Signal Modeling of Switched Tank Converter with Partial Power Voltage Regulation

Zisen Liu, Yundong Ma, Fuchun Zhang, Huijun Lu Nanjing University of Aeronautics and Astronautics, China

0822 Capacitor Voltage Round-Robin Transmission Modes with Voltage-Ripple-Filtering Capability for an MMC Distributed Control System

Shunfeng Yang, Shun Liu, Hang Su, Wensheng Song, Bo Zhan Southwest Jiaotong University, China

Virtual 1

Tuesday, October 13

2:05PM-2:35PM

P29 | Drive Applications

Chairs: Bilal Akin, Giacono Scelba

0176 Optimisation and Design Performance of a Small-Scale DC Vernier Reluctance Machine for Direct-Drive Wind Generator Drives

Udochukwu B. Akuru¹, Maarten J. Kamper², Mkhululi Mabhula² ¹Tshwane University of Technology, South Africa; ²Stellenbosch University, South Africa

0372 Analysis of Double-Output CLL Resonant Converter for All-Electric UAV Applications

Erdem Asa¹, Kerim Colak², Omer C. Onar¹, Dariusz Czarkowski³, Burak Ozpineci¹ ¹Oak Ridge National Laboratory, United States; ²Hevo Power Inc., United States; ³New York University, United States

0480 | Model Reference Adaptive Control of Pulse Amplitude Modulated PM Motor Drive for High Power Transport Drone Applications

Ching-Lon Huang, Chi-Jun Wu, Shih-Chin Yang National Taiwan University, Taiwan

0961 Investigation of a Reduced Cost Solution to implement integrated Safe Torque-OFF Function in Cascaded H-Bridge Motor Drives

Ahmed Abuelnaga¹, Mehdi Narimani¹, Marius Chis², Karthik Kandasamy¹, Navid Reza Zargari² ¹McMaster University, Canada; ²Rockwell Automation Canada, Canada

1465 An Analytical Solution-Based Hybrid Operation of a Three-Level Converter Drive System for a Dynamic Load

Harish Pulakhandam, Subhashish Bhattacharya North Carolina State University, United States

1542 | Modeling and Analysis of Sensor Error Effects on DC-Link Current Ripple in Switched Reluctance Machine Drives

Md Ehsanul Haque¹, Sifat M. Chowdhury¹, Omer Gundogmus¹, Anik Chowdhury¹, Yilmaz Sozer¹, Fernando Venegas², David Colavincenzo²

¹The University of Akron, United States; ²Bendix Commercial Vehicle Systems, United States

1141 | Comprehensive Efficiency Analysis of Current Source Inverter based SPM Machine Drive System for Traction Applications

Feida Chen, Wenda Feng, Hao Ding, Sangwhee Lee, Thomas M. Jahns, Bulent Sarlioglu University of Wisconsin-Madison, United States

0311 | Model-Free Predictive Current Control of Doubly Fed Induction Generator

Tao Jiang¹, Yongchang Zhang¹, Jian Jiao¹, Wei Xu² ¹North China University of Technology, China; ²Huazhong University of Science and Technology, China

0817 | Resonant Frequency Tracking Control for a Linear Compressor with Assist Springs

Takahiro Suzuki¹, Masaki Koyama¹, Shuhei Nagata¹, Wataru Hatsuse¹, Masatsugu Takemoto², Satoshi Ogasawara³ ¹Hitachi, Ltd., Japan; ²Okayama University, Japan; ³Hokkaido University, Japan

0067 | PMSM Six-Step Operation and Dynamic Performance Analysis

Zhendong Zhang, Ahmed Sayed Ahmed, Jacob M. Lamb Rockwell Automation, United States

0194 | Minimizating Pulsating Torque in PMSM Drives by using Feedforward-Based Compensation and Flux-Harmonic Estimation

Noriya Nakao¹, Kazuaki Tobari¹, Tomohiro Sugino², Yoshiki Ito², Mitsuhiro Mishima², Daisuke Maeda² ¹Hitachi, Ltd., Japan; ²Hitachi Power Semiconductor Device, Ltd., Japan

0422 Optimal LCL Filter Design for a Regenerative Cascaded H-Bridge (CHB) Motor Drive

Zhituo Ni¹, Mehdi Narimani¹, Navid Reza Zargari² ¹McMaster University, Canada; ²Rockwell Automation Canada, Canada

1042 | Standstill Self-Commissioning of an Induction Motor Drive

Eemeli Mölsä¹, Lauri Tiitinen¹, Seppo Saarakkala¹, Luca Peretti², Marko Hinkkanen¹ ¹Aalto University, Finland; ²KTH Royal Institute of Technology, Sweden

1060 Zero-Sequence Current Suppression with Dead-Time Compensation Control in Open-End Winding PMSM

Jae-Hoon Shim¹, Hyeon-gyu Choi², Jung-Ik Ha¹ ¹Seoul National University, Korea; ²Garrett Motion, Korea

1555 Modulation Schemes for Balanced Inverter under Single Upper/Lower Switch Fault Conditions

Zhouzhou Wang, Hao Zeng, Bulent Sarlioglu University of Wisconsin-Madison, United States

Wen Zhang¹, Fred Wang^{1,2}

1375 Voltage Balancing Control with Capacitor Charging Method for Series Connected SiC MOSFET Submodules

Inhwan Lee, Xiu Yao University at Buffalo, United States

Tuesday, October 13

Virtual 2

Tuesday, October 13

2:05PM-2:35PM

P30 | Renewables and Energy Storage

Chairs: Zhiqiang (Jack) Wang, Yaosuo Xue

0614 Solar PV Battery based System for Telecom Tower Application

Gaurav Modi, Bhim Singh Indian Institute of Technology-Delhi, India

0460 | Grid-Integrated Solar PV fed SRM Water Pump Drive for Small-Scale Irrigation and Household Supply

Amarnath Yalavarthi, Bhim Singh Indian Institute of Technology-Delhi, India

1357 | FACTS-Based Grid Interface Design with Embedded Energy Storage for Ocean Wave Power

Ali Shahbaz Haider, Ted K.A. Brekken, Yue Cao, Mario E. Magana Oregon State University, United States

0710 | Evaluation of Wireless Communication Networks on Secondary Control in Underwater Microgrid

Luocheng Wang, Yongjie Guan, Tianze Chen, Ephraim Moges, Tao Han, Tiefu Zhao University of North Carolina-Charlotte, United States

1064 Optimization-Based Design of Power Architecture for 5G Small Cell Base Stations

Jorge Alejandro May Alvarez, Francisco Paz, Ignacio Galiano Zurbriggen, Martin Ordonez The University of British Columbia, Canada

1258 | Lyapunov Energy Function based Control of a Soft Switching Solid State Transformer for Three-Phase Standalone Application

Vikram Roy Chowdhury, Rajendra Prasad Kandula, Deepak Divan Georgia Institute of Technology, United States

1594 | Frequency Scanning-Based Contributions Identification of Current Control Loop and PLL on DQ Impedance Characteristics of Three-Phase Grid-Connected Inverter

Weihua Zhou¹, Yanbo Wang¹, Raymundo E. Torres-Olguin², Zhe Chen¹ ¹Aalborg University, Denmark; ²SINTEF, Norway

1336 Optimization based Integrated Adaptive Control Architecture for Grid Connected Inverter (GCI)

Anuprabha Ravindran Nair, Michael Smith, Sukumar Kamalasadan University of North Carolina at Charlotte, United States

Virtual 3

P31 | Gate Drivers, Modules and Packaging

Chairs: Tanya Gachovska, Hengzhao Yang

0947 | Large Signal Stability Analysis of Self-Turn-On in Switching Transients

¹The University of Tennessee, United States; ²Oak Ridge National Laboratory, United States

2:05PM-2:35PM

0189 Novel GaN GIT Gate Driving Technique using Two-Step Turn-Off Fashion

Noriyuki Nosaka, Wataru Okada, Takeshi Uematsu, Toshiyuki Zaitsu OMRON Corp., Japan

0696 Reduction of the Crosstalk Conduction Effect of Parallel GaN HEMTs in Half-Bridge

Jean-Sylvio Ngoua Teu Ngoua Teu, Thanh-Long Le Safran Tech, France

1206 Gate Drive Power Supply for On-Board Marx Circuit using only Charging Path of Marx Capacitor

Keisuke Kusaka, Yosuke Ouchi, Jun-ichi Itoh Nagaoka University of Technology, Japan

0082 A Novel Double-Sided Cooling Inverter Leg for High Power Density EV based on Customized SiC Power Module

Xinmin Liu, Yiyang Yan, Cai Chen, Zongheng Wu, Yong Kang Huazhong University of Science and Technology, China

1263 Optimization of Common Source Inductance and Gate-Drain Capacitance for Reducing Gate Voltage Fluctuation after Turn-Off Transition

Yusuke Hatakenaka¹, Kazuhiro Umetani², Masataka Ishihara¹, Eiji Hiraki¹ ¹Okayama University, Japan; ²Tohoku University, Japan

1090 | High Performance Gate-Driver Power Supply for Multilevel-Based 1500 V Converters

Emanuel Serban, Mohammad Ali Saket, Martin Ordonez The University of British Columbia, Canada

0459 Current-Bunch: A Fast and Accurate Tool to Extract and Optimize Parasitics of Power Packaging

Liang Wang, Zheng Zeng, Yue Yu, Kaihong Ou, Jin Wang Chongqing University, China

0164 Enhancing Lifetime of Power Electronic Modules via Thermal Buffers

Alexander Stippich, Christoph H. van der Broek, Rik W. De Doncker RWTH Aachen University, Germany

0367 An Integrated approach to Developing Thermal Models for Automotive Electric Drives

Neelakantan Padmanabhan, Abraham Gebregergis, Santhosh Veigas *Veoneer US Inc., United States*

Virtual 4

Tuesday, October 13

2:05PM-2:35PM

P32 | Converter Control and Modeling 3

Chairs: Yongheng Yang, Wei Du

0038 | Multifrequency Vibration Suppression of Magnetic Bearing Systems Applied Variable Step-Size Automatic Learning Control

Hongbo Sun, Dong Jiang, Jianfu Ding, Jichang Yang Huazhong University of Science and Technology, China

0038 A Reinforcement Learning-Based Data-Driven Voltage Regulator for Wireless Chargers of Electric Vehicles

Jiaxin Teng¹, Lizhi Qu², Dariusz Czarkowski¹ ¹New York University, United States; ²Toshiba International Corp., United States

0848 A Double-Loop Maximum Power Point Tracking Algorithm for Dual-Input Phase-Shifted LLC Converter

Ala A. Hussein¹, Abdullah Alhatlani, Sumana Ghosh, Issa Batarseh ¹Prince Mohammad Bin Fahd University, Saudi Arabia;²University of Central Florida, United States

0890 Optimal Asymmetric Duty Modulation to Minimize Inductor Peak-to-Peak Current for a Dual Active Bridge Converter Over a Wide Voltage Range

Di Mou¹, Quanming Luo¹, Jia Li¹, Zhiqing Wang¹, Yuqi Wei², Jian Huang¹ ¹Chongqing University, China; ²University of Arkansas, United States

0555 An Inductor Current Estimation Approach for DC/DC Converters based on Bisection Method

Zhe Zhao, Fei Diao, Yuheng Wu, Nan Lin, Yue Zhao University of Arkansas, United States

0443 Accelerated Model of Static Power Converter for Co-Phase Traction Power System

Zhuoxuan Shen¹, Xiaoqian Li¹, Yingdong Wei¹, Ziming Li¹, Mingrui Li¹, Haiping Guo², Qirong Jiang¹, Yunzhi Lin² ¹Tsinghua University, China; ²Electric Power Research Institute China Southern Power Grid, China; ³China Railway Electrification Engineering Group Co., Ltd., China

1024 Analysis of Rapid Control Prototyping Performance for Power Conversion Applications

Andrés Rón¹, Andrés Tarrasó¹, Álvaro Luna¹, Pedro Rodríguez² ¹Universitat Politècnica de Catalunya, Spain; ²Universidad Loyola Andalucía, Spain

0346 Extended Two-Terminal Network Model of Parallel VSMs for Analysis of Active Power-Frequency Response

Jiaoxin Jia¹, Xiangwu Yan¹, Benshuang Qin¹, Abubakar Siddique², Bo Zhang¹ ¹North China Electric Power University, China; ²Khwaja Fareed University of Engineering & Information Technology, Pakistan

0715 | Extended Kalman Filter based State and Parameter Estimation Method for a Buck Converter Operating in a Wide Load Range

Muhammed Yusuf Candan^{1,2}, Mustafa Mert Ankarali¹ ¹Middle East Technical University, Turkey; ²Aselsan Inc., Turkey

1170 | Harmonic Filter with Low Coupling Capacitance for Medium Voltage, High DV/DT PWM Converters

Vaibhav Uttam Pawaskar, Van Thuan Nguyen, Ghanshyamsinh Gohil, Poras T. Balsara The University of Texas at Dallas, United States

1558 Estimation of the Internal Junction Temperatures of Resin Encapsulated IGBT Power Modules

Matteo Gregorio¹, Fausto Stella¹, Radu Bojoi¹, Fabio Pagani² ¹Politecnico di Torino, Italy; ²Prima Electro S.p.a., Italy

0612 | Modeling and Control of a Discontinuous Quasi-Switched Boost Cascaded Multilevel Inverter for Grid-Tied Applications

Truong-Duy Duong¹, Minh-Khai Nguyen², Young-Cheol Lim¹, Joon-Ho Choi¹, Caisheng Wang², Mahinda Vilathgamuwa³ ¹Chonnam National University, Korea; ²Wayne State University, United States; ³Queensland University of Technology, Australia

Virtual 1

Tuesday, October 13

P33 | Magnetic and Insulating Materials and Thermal Management

Chairs: Maeve Duffy, Zhiqiang (Jack) Wang

1456 | Low-Latency High-Speed Saturable Transformer based Zero-Crossing Detector for High-Current High-Frequency Applications

Dhrubo Rahman, M.A. Awal, Md Sariful Islam, Wensong Yu, Iqbal Husain North Carolina State University, United States

1314 Analysis and Prediction of AC Resistance of Litz Wire with Rectangular Cross-Section

Shota Kawahara¹, Kazuhiro Umetani², Eiji Hiraki¹ ¹Okayama University, Japan; ²Tohoku University, Japan 2:40PM-3:10PM

1474 | Design and Performance Evaluation of an Air-Core Inductor for a Point-of-Load (POL) Converter

Saket Jha, Sonam Acharya, Sanatnu Mishra Indian Institute of Technology Kanpur, India

0713 | Evaluation of Temperature Effect on Inductance Computation in Variable Magnetic Components for Dual-Active-Bridge Application

Sarah Saeed¹, Jorge Garcia¹, Marina S. Perdigão{2,3}, Valter S. Costa{2,4}, Ramy Georgious{1,5} ¹University of Oviedo, Spain; ²Instituto de Telecomunicações, Portugal; ³Coimbra Polytechnic-ISEC, Portugal; ⁴University of Coimbra, Portugal; ⁵Port Said University, Egypt

1601 | Investigation of Low-Pressure Condition Impact on Partial Discharge in Micro-Voids using Finite-Element Analysis

Moein Borghei, Mona Ghassemi Virginia Polytechnic Institute and State University, United States

0653 Reducing Local Concentrated Gap Loss of a Nanocrystalline Core by Applying Alloy Gap

Xuan Guo¹, Li Ran¹, Peter Tavner² ¹University of Warwick, United Kingdom; ²Durham University, United Kingdom

0466 An Active Junction Temperature Control Method based on Thermoelectric Coolers

Xiaofeng Ding, Xinrong Song, Zhenyu Shan Beihang University, China

1015 Active Thermal Management for Enhancing Peak-Current Capability of Three-Phase Inverters

Christoph H. van der Broeck, Rik W. De Doncker RWTH Aachen University, Germany

0044 Expediting Transient Thermal Frequency Response Characterization and Sensitivity Analysis

Timothy A. Polom¹, Robert D. Lorenz² ¹Silicon Austria Labs, Austria;²University of Wisconsin-Madison, United States

1420 Power Module Design for Integrated Three-Phase Current Sensing using a Single 3-D Point Field Detector

Muhammad H. Alvi¹, Minhao Sheng², Robert D. Lorenz², Thomas M. Jahns² ¹General Motor Research and Development, United States; ²University of Wisconsin-Madison, United States

Virtual 2

Tuesday, October 13

2:40PM-3:10PM

P34 | HVDC, FACTS, Implementation and Reliability of Power Converters

Chairs: Ghanshyamsinh Gohil, Eduard Muljadi

0912 | Elimination of 2f Ripple in a Current Shared Interleaved Current Fed Switched Inverter

Sonam Acharya, Anil Gambhir, Santanu Mishra Indian Institute of Technology Kanpur, India

0103 Scalar Approach based PWM Strategy for Two-Level Three-Phase VSIs to Reduce Switching Losses and RMS Current in DC-Link Capacitors

Junhyuk Lee, Hyoung-Kyu Yang, Jung-Wook Park Yonsei University, Korea

0064 An Integrated Control Method for Improving the Input Current of Paralleled Vienna Rectifiers

Jiawei Ji¹, Zhao Liu¹, Jianshou Kong², Jie Yu¹, Yiyan Lu¹, Kui Xu³ ¹Nanjing University of Science and Technology, China; ²Changshu Intelligent Laser Equipment Research Institute, China; ³Jiangsu Nicetown Electric Power Automation Co., China

0021 Post Production PMSM Position Sensor Offset Error Quantification via Voltage Estimation Sandun S. Kuruppu, Yu Zou

Saginaw Valley State University, United States

0031 Advances of Modeling and Reduction of Conducted and Radiated EMI in Flyback Converters

Juntao Yao, Yiming Li, Zhedong Ma, Shuo Wang University of Florida, United States

0344 | Fault-Tolerant Control Strategy for Reduced Torque Ripple of Independent Twelve-Phase BLDC Motor Drive System under Open-Circuit Faults

Hyeoncheol Park, Yongsug Suh Jeonbuk National University, Korea

0378 | Investigation of Dynamic Temperature-Sensitive Electrical Parameters for Medium-Voltage Low-Current Silicon Carbide and Silicon Devices

Ze Ni^{1,2}, Sheng Zheng¹, Madhu Sudhan Chinthavali¹, Dong Cao³ ¹Oak Ridge National Laboratory, United States; ²North Dakota State University, United States; ³University of Dayton, United States

0060 An Overvoltage-Less Protection Method for Pole-to-Ground Faults in Symmetrical Monopole HVDC Systems by Half-Bridge MMC

Kenichiro Sano, Hiro Nakayama Tokyo Institute of Technology, Japan

0499 Research on a Multi-Line Electromagnetic Sen Transformer Suitable for Distribution Network

Shunkai Xu, Jiaxin Yuan, Shan Yin Wuhan University, China

0062 | High Power Density Power Electronic Transformers using ISOS Multi-Cell Full-Wave Rectifier with GaN TCM Virtual Capacitor Converters

Yusuke Hayashi, Hongliang Su, Kazuto Takao *Toshiba Corp., Japan*

1301 | Sorting-Selecting Modulation Technique for Double-Capacitor Sub-Modules based Modular Multi-Level Converters

G. Veera Bharath, Ghanshyamsinh Gohil University of Texas at Dallas, United States

1559 | Backstepping Control for Multilevel STATCOM

A.M. Saif^{1,2}, M. Tinari^{1,2}, P. Ciammaichella², C. Buccella^{1,2}, S. Di Gennaro¹, C. Cecati^{1,2} ¹University of L'Aquila, Italy; ²DigiPower srl, Italy

0116 Coordinated Control of Power and Current of MMC-HVDC and Circulation Suppression in Unbalanced Power Grid

Hongbin Pan, Jiale Zhang, Cheng Deng, Haohao Ruan, Shixiang Ma Xiangtan University, China

1100 Over-Current Protection for Series-Connected IGBTs based on Desaturation Detection

Lu Yue, Muhammad Abubakr Saeed, Inhwan Lee, Xiu Yao State University of New York at Buffalo, United States

0533 Active Damping Control of Multi-Port DC Power Flow Controller for Suppressing Power Oscillation of MMC-MTDC under Unbalanced Grid

Wen Wu, Xuezhi Wu, Long Jing Beijing Jiaotong University, China Tech Program Schedule | Poster Sessions

Virtual 3

Tuesday, October 13

2:40PM-3:10PM

P35 | Other Devices, Components, and Materials

Chairs: Mona Ghassemi, Ramanujam Ramabhadran

0507 A Data-Based IGBT Model for Efficient and Accurate Electro-Thermal Analysis

Jianpeng Wang¹, Meng Xu¹, Jin Zhang¹, Laili Wang¹, Yongmei Gan¹, Tomoyuki Yamazaki² *'Xi'an Jiaotong University, China; ²Fuji Electric Co., Ltd., Japan*

0335 Accurate Temperature-Dependent IGBT Model for Predicting Commutation Voltage Overshoot in MW-Level Power Converters

Ariya Sangwongwanich¹, Francesco Iannuzzo¹, Rui Wu², Morten Hygum², Frede Blaabjerg¹ ¹Aalborg University, Denmark; ²Vestas Wind Systems A/S, Denmark

1395 Enabling High Efficiency in Low-Voltage Soft-Switching Current Source Converters

Aniruddh Marellapudi, Mickael J. Mauger, Prasad Kandula, Deepak Divan Georgia Institute of Technology, United States

0827 | High Current, High Bandwidth Current Measurement Techniques

Tianqi Zhang¹, Edward Shelton², Luke Shillaber¹, Patrick Palmer³ ¹University of Cambridge, United Kingdom; ²Cambridge Design Partnership, United Kingdom; ³Simon Fraser University, Canada

0753 Design of a 200 kW Medium-Frequency Transformer (MFT) with High Insulation Capability

Zhicheng Guo, Soumik Sen, Sanjay Rajendran, Qingyun Huang, Xianyong Feng, Alex Q. Huang University of Texas-Austin, United States

0247 A Passive Integration Unit for Current-Feed Single-Switch Resonant Converter

Cheng Deng^{1,2}, Jiang Bo¹, Andrés Escobar-Mejía³

¹Xiangtan University, China; ²Hunan Province Cooperative Innovation Center for Wind Power Equipment and Energy Conversion, China; ³Universidad Tecnológica de Pereira, Colombia

0618 Design and Optimization Methodology of Transformer for 700/400 V Series Resonant DC/DC Converters with Enhanced Power Density

Alex Buus Nielsen{1,3}, William Gerard Hurley², Pooya Davari¹, Maeve Catherine Duffy², Frede Blaabjerg¹, Bo Vork Nielsen³ ¹Aalborg University, Denmark; ²National University of Ireland-Galway, Ireland; ³Illinois Tool Works Ground Support Equipment, Denmark

0756 | Design of Insulation System in High-Frequency Auxiliary Power Supply for Medium Voltage Applications

Ning Yan¹, Qin Chen², Dong Dong¹, Rolando Burgos¹ ¹Virginia Polytechnic Institute and State University, United States; ²Applied Materials, United States

0141 Effects of Supercapacitor State of Charge on its Maximum Charge Delivery Capability

Hengzhao Yang New Mexico Institute of Mining and Technology, United States

0308 A Thermal Management Strategy for Smoothing the Mission Profile Thermal Cycle of Power Device in the Wind Power Converter

Jun Zhang¹, Xiong Du², Heng-Ming Tai³ ¹Hohai University, China; ²Chongqing University, China; ³University of Tulsa, United States

0284 Comparison of Two Hollow-Shaft Liquid Cooling Methods for High Speed Permanent Magnet Synchronous Machines

Runyu Wang, Xinggang Fan, Dawei Li, Ronghai Qu Huazhong University of Science and Technology, China

0942 Enhanced Inductance and Winding Loss Model for Coupled Inductors

Han Cui¹, Lingxiao Xue², Khai Ngo³ ¹The University of Tennessee, United States; ²Oak Ridge National Laboratory, United States; ³Virginia Polytechnic Institute and State University, United States

0821 | High-Precision Simulation for Structure and Efficiency Optimization of High-Power High-Frequency Transformer

Zheyuan Yi¹, Kai Šun¹, Shilei Lu¹, Guoen Cao², Yongdong Li¹, Jung-Ik Ha³ ¹Tsinghua University, China; ²Chinese Academy of Sciences, China; ³Seoul National University, Korea

1345 | Virtual Prototyping of MV and HV Modular Multilevel Power Converter using Evolutionary Optimization based on ρ and η

Rounak Siddaiah, William J. Koebel, Robert M. Cuzner University of Wisconsin-Milwaukee, United States

Virtual 4

Tuesday, October 13

2:40PM-3:10PM

P36 | Power Converter EMI and Stability

Chairs: Min Chen, Malik Elbuluk

0366 Common Mode EMI Mitigation at a Power Converter Network

Ashik Amin, Seungdeog Choi Mississippi State University, United States

0392 An EMI Suppression Strategy for Si/SiC Hybrid Switch based Single-Phase Inverter

Ling Ou, Zishun Peng, Zeng Liu, Xiaogui Peng, Jun Wang, Shuaige Zhu, Qihui Fu Hunan University, China

1537 Reduction of Electromagnetic Interference (EMI) in Interleaved DC-DC Converters

Mohammad Arifur Rahman, Yilmaz Sozer, J. Alexis De Abreu-Garcia The University of Akron, United States

1425 Common-Mode EMI Examination of Three-Phase Voltage-Source and Current-Source Converters Systems using WBG Devices

Hang Dai, Renato A. Torres, Jerome Gossmann, Woongkul Lee, Thomas M. Jahns, Bulent Sarlioglu University of Wisconsin-Madison, United States

0934 CAN Signal Processing for EMI Reduction Cooperating with Switched-Mode Power Supply

Ryo Shirai, Keiji Wada, Toshihisa Shimizu Tokyo Metropolitan University, Japan

1211 Comparison of High-Frequency Impedance of AC Machines with Circumferential and Toroidal Winding Topologies for SiC MOSFET Machine Drives

Sangwhee Lee, Mingda Liu, Woongkul Lee, Bulent Sarlioglu University of Wisconsin-Madison, United States

0648 A Condition to Get Rid of Slope Compensation in Peak Current-Mode Controllers

Hideaki Funaki¹, Atsushi Mishima¹, Masahito Shoyama¹, Yuichi Noge¹, Tomonori Kimura², Takahiro Yamada², Gamal M. Dousoky³

¹Kyushu University, Japan; ²MIRISE Technologies Corp., Japan; ³Minia University, Egypt

0824 Accurate dq Frame Modeling of a Three-Phase PWM Converter with Digital Control Delay

Bo Zhan, WenSheng Song, Jinhui Chen, Shunfeng Yang, Shun Liu Southwest Jiaotong University, China

0964 Positive-Negative Sequence SRF-PLL Model for Accurate Stability Analysis in Grid-Tied Converters

Sante Pugliese, Yongdae Kwon, Marco Liserre Christian-Albrechts-Universität Kiel, Germany

Products and Services Sessions

These half-hour, industry-driven sessions, provide an in-depth look from our exhibitors, showcasing their innovative products and services.

ROHM PRODUCTS & SERVICES SESSION

MATHWORKS PRODUCTS & SERVICES SESSION

EGSTON POWER PRODUCTS & SERVICES SESSION

ON PRODUCTS & SERVICES SESSION

Student Demonstrations

Student Demonstrations provide an opportunity for students from various universities and countries to showcase their emerging technology research outcomes and interact with academia and industry.

Since 2011, ECCE has organized the hardware demo event for students to showcase their research outcomes and interact with academia and industry.

This year's event will be fully virtual. Instead of presenting demos in-person, project teams will submit 5-minute videos showcasing their demos using slides with voiceover and live footage. **Video available for viewing on the ECCE virtual platform to ECCE attendees October 9 - November 16, 2020.**

Each project demonstration will be evaluated by a judging panel comprising members from the industry and the academia. The panel members will select the top three project demonstrations based on originality/creativity, engineering design, value to practical applications, presentation, and audience appeal.

Mentors + Advocates: How to be one + How to find one

Sponsored by IEEE PELS

Date: October 14, 2020

Time: **10am EST** or **9pm EST** (participants choose one time)

A successful career typically has benefited from coaches, mentors, advocates and sponsors. Do you know the difference between them? Do you know when you need one or how you can be one? In this virtual event, you will learn the difference between these different roles, as well as how you can find

or be a part of the career evolution process for yourself and others. This event includes facilitated small group discussions applicable to everyone at all career levels.

To launch the discussion, this event includes a pre-event screening of the award-winning documentary, Pioneers in Skirts. This film provides a unique focus on the challenges in achieving gender parity in our culture.

Come be part of a transformative conversation supporting inclusion at all levels of our Power Electronics community. Leave the event with new tools to fully engage everyone in our community and achieve the full potential of Power Electronics' impact on the world.

Women in Engineering (WiE) Discussion Event

Registration Link: https://app.smartsheet.com/b/form/ e637ed14562748fc95396b5c48eb6dfc

Exhibitor Listing

WILEY

2020 IEEE ENERGY CONVERSION CONGRESS & EXPOSITION®

IEEE ENERGY CONVERSION CONGRESS & EXPO

Vancouver, Canada 💥 Oct. 10-14

IMPORTANT DATES

January 15, 2021 Digest submission

May 1, 2021 Author notification

June 30, 2021 Final papers with IEEE copyright forms

General Chair Giovanna Oriti Naval Postgraduate School, USA

ECCE 2021 Technical Program Co-Chairs

Contact email: ecce2021tpc@gmail.com

Jean-Luc Schanen Univ. Grenoble Alpes- G-INP, France Luca Zarri

Univ. Bologna, Italy

Mark Scott Miami University, USA

Gianmario Pellegrino Politecnico di Torino, Italy

Michael Harke Collins Aerospace, USA

Elisabetta Tedeschi NTNU, Norway / Univ. Trento, Italy

The Thirteenth Annual IEEE Energy Conversion Congress and Exposition (ECCE 2021) will be held in Vancouver, British Columbia, Canada, from October 10 to October 14, 2021. ECCE is a pivotal international event on energy conversion. ECCE 2021 will feature both industry-driven and application-oriented technical sessions as well as an exposition. The conference will bring together practicing engineers, researchers and other professionals for interactive and multidisciplinary discussions on the latest advances in areas related to energy conversion.

Technical papers are solicited on any subject pertaining to the scope of the conference including, but not limited to, the following major topics:

Energy Conversion Systems and Applications

- Renewable and alternative energy
- Smart grids, micro-grids, and utility applications
- Electrical energy storage
- Energy conversion for information technology and communication systems
- Energy harvesting
- Energy efficiency for residential, commercial, and industrial applications

Component, Converter and Subsystem Technologies

- Power electronic devices (silicon and wide bandgap) and applications
- > Passive components and materials
- Power electronic packaging, integration, and advanced manufacturing
- Reliability, advanced fault protection systems, diagnostics, prognostics, and equipment health management

- Big data and machine learning applications in energy conversion
- Wireless power transfer
- Lighting applications and displays
- Transportation electrification
- High power/voltage power conversion
- High voltage isolation and lightning strike protection
- Electric machines and drives for transportation electrification
- Thermal management and advanced cooling technologies
- Electromagnetic interference and electromagnetic compatibility
- Power conversion topologies, modulation, and control
- Electrical drive systems and topologies and their control
 - Modeling and control of components, converters, and systems
- Rotating/linear electro-mechanical devices

Digest Submission: Prospective authors are requested to submit a single column, single spaced digest no longer than five (5) pages summarizing the proposed paper. The digest should include key equations, figures, tables, and references as appropriate, but no author names or affiliations. **Digests not conforming to** *these requirements will be rejected without review.* The digests must clearly state the objectives of the work, its significance in advancing the state of the art, and the methods and specific results in sufficient detail. All digests will go through a double-blind peer review process to ensure a confidential and fair review. The papers presented at the conference will be included in the IEEE Xplore Digital Library. Please refer to the conference website for a detailed list of technical topics and the digest submission method.

www.ieee-ecce.org/2021

IEEE ENERGY CONVERSION CONGRESS & EXPO

Vancouver, Canada 🗮 Oct. 10-14

IMPORTANT DATES

February 12, 2021 Tutorial proposal due

April 2, 2021 Notification of acceptance

June 30, 2021 Full tutorial materials due

General Chair

Giovanna Oriti Naval Postgraduate School, USA

Tutorial Co-Chairs

Yue Cao Oregon State University, USA

Katherine A. Kim National Taiwan University, Taiwan The 13th Annual IEEE Energy Conversion Congress and Exposition (ECCE 2021) will be held in Vancouver, British Columbia, Canada, from October 10 to October 14, 2021. ECCE is a pivotal international event on energy conversion. A diverse portfolio of tutorials are solicited: 1) Basic knowledge in a particular subfield of power electronics or energy conversion, from components to systems; 2) Emerging technology in either fundamental breakthroughs or new applications; 3) Industry skillsets or tools with knowledge beyond textbooks or academic papers. All tutorials are held on Sunday. October 10, 2021, either morning or afternoon. Each tutorial is 3 hours long, excluding break times. Each accepted tutorial will receive one conference registration together with an honorarium of \$1,000. Note that publication of a technical paper will still require a paid full registration.

One or more of the following elements are *strongly encouraged* in the tutorial proposals: A) Industry led or co-hosted lectures; B) Interactive instructor-audience approaches, including hands-on; C) ECCE 2021 regionally oriented topics; D) Collaborative cross-disciplinary topics or teams; E) Other creative topics or formats that engage the audience.

Factors considered as *less attractive* to the audience are: a) Narrowly focused topics: b) Theory heavy lectures; c) Similar tutorial topics or teams from the immediate past ECCE or other major PELS conferences; d) Solicitation of a particular product or service.

Potential topic areas include but are not limited to:

Energy Conversion Systems and Applications

- Renewable energy, including under-represented ocean-wave, tidal, geothermal
- Smart grids, micro-grids, nano-grids
- Electrical energy storage, including real physics or controlled virtual storage
- Energy conversion for information technology and communication systems
- Energy harvesting and conversion

Component, Converter and Subsystem Technologies

- Power electronic devices
- > Power conversion topologies, modeling, and control
- Electric machines and drives
- Passive components, magnetics, and materials
- Packaging, integration, and advanced manufacturing
- ▶ EMI and EMC
- > Thermal management, advanced cooling technologies

Others

- Schematic and PCB layout designs
- > Pedagogy for undergraduate learning or under-represented groups

- Smart and energy efficient buildings
- Energy efficiency for advanced manufacturing
- Big data and machine learning in energy conversion
- Cybersecurity in power electronics based systems
 - Transportation electrification, including aircraft and urban aerial mobility
 - Battery charging technologies
 - Resiliency in energy systems
 - Wireless power transfer
 - High voltage power conversion, including insulation technologies
 - Design automation or optimization
 - ▶ Reliability, diagnostics, prognostics, and health management
 - Fault-tolerant converters and systems

Post-COVID technology innovations

Proposal Submission and Review Process: All tutorial proposals should be submitted via the ECCE 2021 web portal under "Call for Tutorials". Please follow the Tutorial Proposal Form on the website as a submission template. The proposals will be reviewed by a panel of subject matter experts.

Format: Maximum 5 pages. All pages are formatted to 8-1/2 by 11 inch or A4 paper with margins of one inch on every side. All texts use single space, Times New Roman, black ink, and a font size of 11 or 12.

Recommended Sections:

1. Tutorial Title

2. Instructor Team

name(s), affiliation(s), and contact information

3. Abstract

No more than 500 words. Accepted abstract will be published through the conference website, program, and proceedings.

4. Tutorial Outline

Outline shall only define the topics and subtopics. No detailed descriptions please. Time allocation and instructor breakdown by topics is recommended.

5. Lecture Style and Requirements

Briefly describe the tutorial format, which may include traditional lecture, software/hardware demonstration, interactive audience polls/ quizzes, worksheets, discussion, etc. Note any equipment or space requirements beyond a laptop and projector. Also list the targeted audience and tutorial difficulty level, including any pre-requisite knowledge.

6.Instructor Biography

No more than 200 words for each person. Each biography shall include the qualifications most relevant to the proposal. Past tutorial/ teaching experience and outcome can be highlighted. External website link can be included but may not be reviewed.

Call for Special Sessions

IEEE ENERGY CONVERSION CONGRESS & EXPO

Vancouver, Canada 🗮 Oct. 10-14

IMPORTANT DATES

March 31, 2021 Proposal submission deadline

May 1, 2021 Notification of session acceptance

June 1, 2021 Final session plan submission deadline

General Chair Giovanna Oriti Naval Postgraduate School, USA

Special Session Chairs

Xiaonan Lu Temple University, USA

Fei Ding National Renewable Energy Laboratory, USA

155

The Thirteenth Annual IEEE Energy Conversion Congress and Exposition (ECCE 2021) will be held in Vancouver, British Columbia, Canada, from October 10 to October 14, 2021. ECCE 2021 will bring together practicing engineers, researchers, and other energy conversion professionals for interactive and multidisciplinary discussions on the latest advances in the areas related to

Special Sessions are solicited focusing on emerging technologies and industry-oriented topics, featuring diversified formats including oral presentations, open panel discussions, debates, virtual factory tour and demo, etc. Industry hosted or co-hosted sessions are of particular interest, and audience participation is strongly encouraged. Note that commercialization content should be avoided, and no written papers are required for Special Session presentations. Materials presented in the Special Sessions are not subject to peer review and will not be made available in the conference proceedings. However, presenters are encouraged to distribute their presentations to the audience.

Potential topic areas include but are not limited to:

Components and Converters

energy conversion.

- Wide bandgap devices and their emerging applications in power electronics
- Artificial intelligence (AI) aided converter control and design
- Thermal management, and advanced cooling technologies
- Reliability, diagnostics, and prognostics of components and modular systems

Power Electronics Intensive Energy Conversion Systems

- Renewable energy systems, energy storage systems, and their integration into modern electric grids
- AC, DC, and hybrid micro-grids and nano-grids
- Power electronic based grid infrastructures: technologies, trend, and grid integration

Others

- Advanced testing and validation, including controller/power hardware-in-the-loop testing, etc.
- Standard development for power electronics systems/products

- > Electric machine design and motor drives
- Advanced technologies for power electronics such as materials, 3-D printing, magnets, magnetic devices, capacitors, switching devices, EMI/EMC, etc.
- Resiliency enhancement and active stabilization of power electronics based power systems
- Transportation electrification, including electric vehicles, aircraft, ships, drones, etc.
- Cybersecurity in power electronic inverters and inverter dominated energy systems
- Power electronics education and research for under-represented groups
- COVID-related innovations with power electronics technologies

Proposal Submission Guidelines: Special Session organizers are requested to submit a maximum five-page proposal summarizing the proposed session plan. The proposal should indicate the session format and should contain the session title, session organizer, presenters or panelists (with short biography), abstract, etc. All proposals should be submitted via the ECCE 2021 website under "Call for Special Sessions".

Vancouver, Canada

SAVE the the SAVE Solution of the SAVE Solution of the Solution of the Save Solution of the S

IEEE ENERGY CONVERSION CONGRESS & EXPO Vancouver, Canada 😂 Oct. 10–14

http://www.ieee-ecce.org/2021